Skip to main content
Log in

An Effective Solution to Convex 1-Body N-Representability

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

From a geometric point of view, Pauli’s exclusion principle defines a hypersimplex. This convex polytope describes the compatibility of 1-fermion and N-fermion density matrices; therefore, it coincides with the convex hull of the pure N-representable 1-fermion density matrices. Consequently, the description of ground state physics through 1-fermion density matrices may not necessitate the intricate pure state generalized Pauli constraints. In this article, we study the generalization of the 1-body N-representability problem to ensemble states with fixed spectrum \(\varvec{w}\), in order to describe finite-temperature states and distinctive mixtures of excited states. By employing ideas from convex analysis and combinatorics, we present a comprehensive solution to the corresponding convex relaxation, thus circumventing the complexity of generalized Pauli constraints. In particular, we adapt and further develop tools such as symmetric polytopes, sweep polytopes, and Gale order. For both fermions and bosons, generalized exclusion principles are discovered, which we determine for any number of particles and dimension of the 1-particle Hilbert space. These exclusion principles are expressed as linear inequalities satisfying hierarchies determined by the nonzero entries of \(\varvec{w}\). The two families of polytopes resulting from these inequalities are part of the new class of so-called lineup polytopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. It should not be confused with the natural inclusion of \(\mathcal {Fer}(N,d)\) into \(\mathcal {Bos}(N,d)\).

Abbreviations

[d]:

The set \(\{1,2,\dots ,d\}\), for \(d\in \mathbb {N}{\setminus }\!\{0\}\)

|S|:

The cardinality of a set S

\(\mathfrak {S}_{d}\) :

The symmetric group on d objects

\(\mathcal {H},\mathcal {H}_1,\mathcal {H}_N\) :

Finite-dimensional Hilbert spaces

\(\mathscr {B}(\mathcal {H})\) :

The space of Hermitian operators on \(\mathcal {H}\)

\(\text {spec}^{\downarrow }(H)\) :

The vector of decreasing eigenvalues of \(H\in \mathscr {B}(\mathcal {H})\)

\(\text {spec}(H)\) :

The set of vectors \(\mathfrak {S}_{d}\cdot \text {spec}^{\downarrow }(H)\), for an operator \(H\in \mathscr {B}(\mathcal {H})\)

\(\mathscr {D}(\mathcal {H})\) :

The set of density operators on \(\mathcal {H}\)

\(\mathcal {Fer}(N,d)\) :

\(\{(i_1,\ldots ,i_N)\in [d]^N~:~1\le i_1<\dots < i_N\le d\}\)

\(\varvec{i}\) :

An element of \(\mathcal {Fer}(N,d)\) or \(\mathcal {Bos}(N,d)\)

D :

The dimension of \(\mathcal {H}_N\), fermionic case: \(D=\left( {\begin{array}{c}d\\ N\end{array}}\right) \), bosonic case: \(D=\left( {\begin{array}{c}d+N-1\\ N\end{array}}\right) \)

\(\mathscr {D}^1\), \(\mathscr {D}^N\) :

The set of density operators on \(\mathcal {H}_1\) and \(\mathcal {H}_N\)

\(\textrm{U}(\mathcal {H})\) :

The unitary group of \(\mathcal {H}\)

\(\mathsf {\Delta }_{D-1}\) :

\(\left\{ \varvec{w}\in \mathbb {R}^D:1\ge w_1\ge w_2\ge \cdots \ge w_D \ge 0,\quad \sum _{i=1}^D w_i=1\right\} \)

\(\mathscr {D}(\varvec{w})\) :

\(\{\rho \in \mathscr {D}(\mathcal {H})~:~\text {spec}^\downarrow (\rho )=\varvec{w}\}\)

\(L^N_M\) :

The partial trace operator from \(\mathscr {D}^N\) to \(\mathscr {D}^M\)

\(\mathscr {D}^M_N\) :

\(L^N_M(\mathscr {D}^N)\), the M-reduced density operators on \(\mathcal {H}_M\)

\(\textsf{H}(N,d)\) :

\(\left\{ \varvec{x}\in \mathbb {R}^d~:~\sum _{i=1}^d x_i = N,\quad 0\le x_i\le 1\text { for all }i=1,\dots ,d\right\} \)

\(\mathsf {\Pi }(\varvec{w},N,d)\) :

The polytope \(\text {spec}^{\downarrow }(\mathscr {D}^1_N(\varvec{w}))\)

\(\Lambda (\varvec{w},N,d)\),:

\(\text {spec}(\mathscr {D}^1_N(\varvec{w}))\), the symmetrization of \(\mathsf {\Pi }(\varvec{w},N,d)\)

\(\overline{\mathscr {D}}{}^1_N(d,\varvec{w})\) :

\(\text {conv}\left\{ L^N_1(\tau )~:~\tau \in \mathscr {D}^N(\varvec{w})\right\} \)

\(\varvec{w}'\prec \varvec{w}\) :

\(\sum _{i=1}^kw'_i \le \sum _{i=1}^kw_i\)

\(\Gamma ^1_N(h)\) :

Expansion of the operator \(h\in \mathscr {B}(\mathcal {H}_1)\) to \(\mathscr {B}(\mathcal {H}_N)\)

\(\textbf{o}_{\varvec{w}}(\ell (\varvec{\lambda }))\) :

Occupation vector associated with \(\varvec{\lambda } \in \mathbb {R}^d\)

\(\mathscr {L}(\varvec{w})\) :

\(\{\textbf{o}_{\varvec{w}}(\ell (\varvec{\lambda }))~:~\varvec{\lambda }\in \mathbb {R}^d\}\), the set of occupation vectors

\({\mathsf {\Sigma }^{\textrm{f}}}(\varvec{w},N,d)\) :

Fermionic spectral polytope

\(\mathcal {Bos}(N,d)\) :

\(\{(i_1,\dots ,i_N)\in [d]^N~:~1\le i_1\le \dots \le i_N\le d\}\)

\(\text {Sym}^N\mathcal {H}_1\) :

The N-boson Hilbert space

\(\mathsf {\Sigma }^{\textrm{b}}(\varvec{w},N,d)\) :

Bosonic spectral polytope

\(\left( {\begin{array}{c}J\\ k\end{array}}\right) ,\left( \left( {\begin{array}{c}J\\ k\end{array}}\right) \right) \) :

The collection of k-elements subsets and multisubsets of the set J

\(\varvec{\chi }\) :

Multiplicity function \(S\in \mathbb {N}^d \mapsto \sum _{j\in [d]}S(j)\varvec{e}_j \in \mathbb {R}^d\)

\({\textbf {Fer}}(N,d)\) :

\(\left\{ \varvec{\chi }(S)~:~S\in \left( {\begin{array}{c}[d]\\ N\end{array}}\right) \right\} \)

\({\textbf {Bos}}(N,d)\) :

\(\left\{ \varvec{\chi }(S)~:~S\in \left( \left( {\begin{array}{c}[d]\\ N\end{array}}\right) \right) \right\} \)

\(\textrm{supp}_{\textsf{P}}\) :

Support function of polytope \(\textsf{P}\)

\(\textsf{P}^{\varvec{y}}\) :

Face of \(\textsf{P}\) maximized by the functional \(\langle {\varvec{y}, \cdot }\rangle \)

\(\text {ncone}_{\textsf{P}}(\varvec{v})\) :

Normal cone of \(\textsf{P}\) at vertex \(\varvec{v}\)

\(\mathcal {N}(\textsf{P})\) :

Normal fan of \(\textsf{P}\)

\(\varvec{f}_k\) :

\(\sum _{1\le i\le k} \varvec{e}_i\)

\(\text {Perm}(\textbf{V})\) :

\(\mathfrak {S}_{d}\)-invariant polytope of the point configuration \(\textbf{V}\)

\(\Phi _d\) :

\(\{\varvec{y}\in \mathbb {R}^d~:~y_{1}\ge y_{2}\ge \cdots \ge y_{d}\}\), the fundamental chamber

\(\varvec{x}^\downarrow \) :

Fundamental representative of a vector \(\varvec{x}\)

\(\ell _{\textbf{V},r}(\varvec{y})\) :

r-lineup or r-ranking of the point configuration \(\textbf{V}\) induced by \(\varvec{y}\)

\({\mathcal {L}_r(\textbf{V})}\) :

The set of r-lineups of point configuration \(\textbf{V}\)

\(\textsf{K}_\textbf{V}^\circ (\ell )\) :

\(\{\varvec{y}\in \mathbb {R}^n: \ell (\varvec{y})=\ell \}\), for \(\ell \) an r-ranking of \(\textbf{V}\)

\({\mathcal {R}_{r}(\textbf{V})}\) :

\(\{\textsf{K}_\textbf{V}(\ell )\, \ \ell \) is an r-ranking of \(\textbf{V}\}\)

\(\textsf{L}_{r,\varvec{w}}(\textbf{V})\) :

The r-lineup polytope of \(\textbf{V}\)

\(\textbf{O}_{r}^{\textrm{f}\downarrow }(N,d)\) :

\(\{\textbf{o}_{\varvec{w}}(\ell )~:~\ell \in {\mathcal {L}_r({\textbf {Fer}}(N,d))}\text { and } \ell =\ell (\varvec{y})\text { for some } \varvec{y}\in \Phi ^d\}\)

\(\textbf{O}_{b}^{\textrm{f}\downarrow }(N,d)\) :

\(\{\textbf{o}_{\varvec{w}}(\ell )~:~\ell \in {\mathcal {L}_r({\textbf {Bos}}(N,d))}\text { and } \ell =\ell (\varvec{y})\text { for some } \varvec{y}\in \Phi ^d\}\)

\({\mathcal {T}(P)}\) :

Poset of threshold ideals of \(P\in \{\mathcal {Fer}(N,d),\mathcal {Bos}(N,d)\}\)

References

  1. Altunbulak, M., Klyachko, A.: The Pauli principle revisited. Commun. Math. Phys. 282(2), 287–322 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Andrzejak, A., Welzl, E.: In between \(k\)-sets, \(j\)-facets, and \(i\)-faces: \((i, j)\)-partitions. Discrete Comput. Geom. 29(1), 105–131 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Ardila, F., Castillo, F., Eur, C., Postnikov, A.: Coxeter submodular functions and deformations of Coxeter permutahedra. Adv. Math. 365, 107039, 36 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Arkani-Hamed, N., Bourjaily, J., Cachazo, F., Goncharov, A., Postnikov, A., Trnka, J.: Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  5. Arkani-Hamed, N., Lam, T., Spradlin, M.: Positive configuration space. Commun. Math. Phys. 384(2), 909–954 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. London Math. Soc. 14(1), 1–15 (1982)

    MathSciNet  MATH  Google Scholar 

  7. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Ayres, R.U.: Variational approach to the many-body problem. Phys. Rev. 111, 1453–1460 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Babai, L.: Symmetry groups of vertex-transitive polytopes. Geom. Dedicata 6(3), 331–337 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Bach, V., Rauch, R.: Orthogonalization of fermion \(k\)-body operators and representability. Phys. Rev. A 99, 042109, 10 (2019)

    ADS  Google Scholar 

  11. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra libray: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

    Google Scholar 

  12. Berenstein, A., Sjamaar, R.: Coadjoint orbits, moment polytopes, and the Hilbert–Mumford criterion. J. Am. Math. Soc. 13(2), 433–466 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Billera, L.J., Kapranov, M.M., Sturmfels, B.: Cellular strings on polytopes. Proc. Am. Math. Soc. 122(2), 549–555 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Billera, L.J., Sarangarajan, A.: The combinatorics of permutation polytopes. Formal Power Ser. Algebraic Combin. 24, 1–23 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Billera, L.J., Sturmfels, B.: Fiber polytopes. Ann. Math. 135(3), 527–549 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Borland, R.E., Dennis, K.: The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six. J. Phys. B 5(1), 7–15 (1972)

    ADS  Google Scholar 

  17. Borovik, A.V., Gelfand, I.M., White, N.: Coxeter Matroids, Progress in Mathematics, vol. 216. Birkhäuser Boston Inc, Boston (2003)

    MATH  Google Scholar 

  18. Brion, M.: On the general faces of the moment polytope. Int. Math. Res. Not. IMRN 1999(4), 185–201 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Bruns, W., Ichim, B., Söger, C.: The power of pyramid decomposition in Normaliz. J. Symbol. Comput. 74, 513–536 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Cassam-Chenaï, P., Patras, F.: The Hopf algebra of identical, fermionic particle systems–fundamental concepts and properties. J. Math. Phys. 44(11), 4884–4906 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Chen, J., Ji, Z., Ruskai, M.B., Zeng, B., Zhou, D.-L.: Comment on some results of Erdahl and the convex structure of reduced density matrices. J. Math. Phys. 53(7), 072203, 11 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Christandl, M., Mitchison, G.: The spectra of quantum states and the Kronecker coefficients of the symmetric group. Commun. Math. Phys. 261(3), 789–797 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Cioslowski, J. (ed.): Many-electron densities and reduced density matrices. In: Mathematical and Computational Chemistry. Springer, New York (2000)

  24. Coleman, A.J.: Structure of fermion density matrices. Rev. Mod. Phys. 35, 668–689 (1963)

    ADS  MathSciNet  Google Scholar 

  25. Coleman, A.J.: Necessary conditions for \(N\)-representability of reduced density matrices. J. Math. Phys. 13, 214–222 (1972)

    ADS  MathSciNet  Google Scholar 

  26. Coleman, A.J.: Convex structure of electrons. Int. J. Quant. Chem. 11(6), 907–916 (1977)

    Google Scholar 

  27. Coleman, A.J.: Reduced density matrices-then and now. Int. J. Quant. Chem. 85(4–5), 196–203 (2001)

    Google Scholar 

  28. Coleman, A.J.: Kummer variety, geometry of \(N\)-representability, and phase transitions. Phys. Rev. A (3) 66(2), 022503, 8 (2002)

    ADS  MathSciNet  Google Scholar 

  29. Coleman, A.J., Yukalov, V.I.: Reduced Density Matrices. Lecture Notes in Chemistry, Coulson’s Challenge, vol. 72, Springer, Berlin (2000)

  30. Coulson, C.A.: Present state of molecular structure calculations. Rev. Mod. Phys. 32, 170–177 (1960)

    ADS  MathSciNet  Google Scholar 

  31. Cruickshank, J., Kelly, S.: Rearrangement inequalities and the alternahedron. Discrete Comput. Geom. 35(2), 241–254 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Daftuar, S., Hayden, P.: Quantum state transformations and the Schubert calculus. Ann. Phys. 315(1), 80–122 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Dirac, P.A.: Note on exchange phenomena in the Thomas atom. Math. Proc. Cambridge Philos. Soc. 26(3), 376–385 (1930)

    ADS  MATH  Google Scholar 

  34. Edelman, P.H.: Ordering points by linear functionals. Eur. J. Combin. 21(1), 145–152 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Edelman, P.H., Gvozdeva, T., Slinko, A.: Simplicial complexes obtained from qualitative probability orders. SIAM J. Discrete Math. 27(4), 1820–1843 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Edelsbrunner, H., Valtr, P., Welzl, E.: Cutting dense point sets in half. Discrete Comput. Geom. 17(3), 243–255 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Erdahl, R., Smith, V.H., (eds.): Density Matrices and Density Functionals: Proceedings of the A. John Coleman Symposium. Springer, Dordrecht (1987)

  38. Friese, E., Ladisch, F.: Affine symmetries of orbit polytopes. Adv. Math. 288, 386–425 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Fukuda, K.: Exact algorithms and software in optimization and polyhedral computation. In: ISSAC 2008. ACM, New York, pp. 333–334 (2008)

  40. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  41. Gabrièlov, A.M., Gelfand, I.M., Losik, M.K.: Combinatorial computation of characteristic classes I, II. Funkcional. Anal. i Priložen. 9(2), 12–28 (1975)

    MathSciNet  Google Scholar 

  42. Gale, D.: Optimal assignments in an ordered set: an application of matroid theory. J. Combin. Theory 4, 176–180 (1968)

    MathSciNet  MATH  Google Scholar 

  43. Garrod, C., Percus, J.K.: Reduction of the \(N\)-particle variational problem. J. Math. Phys. 5, 1756–1776 (1964)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. Polytopes Combin. Comput. DMV Sem. 29, 43–73 (1997)

    MathSciNet  MATH  Google Scholar 

  45. Gelfand, I.M., Goresky, R.M., MacPherson, R.D., Serganova, V.V.: Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63(3), 301–316 (1987)

    MathSciNet  MATH  Google Scholar 

  46. Groetsch, C.W.: Functional analysis. In: Meyers, R.A (ed.) Encyclopedia of Physical Science and Technology, 3rd edn, pp. 337–353. Academic Press, New York (2003)

  47. Gross, E.K.U., Oliveira, L.N., Kohn, W.: Rayleigh-Ritz variational principle for ensembles of fractionally occupied states. Phys. Rev. A (3) 37(8), 2805–2808 (1988)

    ADS  MathSciNet  Google Scholar 

  48. Grünbaum, B.: Convex Polytopes. GTM, vol. 221, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  49. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67(3), 491–513 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Brian, C.: Hall, Quantum Theory for Mathematicians. GTM, vol. 267. Springer, New York (2013)

    MATH  Google Scholar 

  51. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge. (Reprint of the 1952 edition) (1988)

  52. Heaton, A., Samper, J.A.: Dual matroid polytopes and internal activity of independence complexes, p. 34. Preprint arXiv:2005.04252 (2020)

  53. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  54. Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Japan 22(4), 264–314 (1940)

    MATH  Google Scholar 

  55. Kirillov, A.A.: Lectures on the Orbit Method. Graduate Studies in Mathematics, vol. 64. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  56. Kirwan, F.: Convexity properties of the moment mapping. III. Invent. Math. 77(3), 547–552 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Klivans, C.J.: Threshold graphs, shifted complexes, and graphical complexes. Discrete Math. 307(21), 2591–2597 (2007)

    MathSciNet  MATH  Google Scholar 

  58. Klivans, C.J., Reiner, V.: Shifted set families, degree sequences, and plethysm. Electron. J. Combin. 15(1), Research Paper 14, 35 (2008)

    MathSciNet  MATH  Google Scholar 

  59. Klyachko, A.A.: Stable bundles, representation theory and Hermitian operators. Selecta Math. (N.S.) 4(3), 419–445 (1998)

    MathSciNet  MATH  Google Scholar 

  60. Klyachko, A.A.: Quantum marginal problem and n-representability. J. Phys. Conf. Ser. 36, 72–86 (2006)

    ADS  Google Scholar 

  61. Klyachko, A.A.: The Pauli exclusion principle and beyond, p. 4. (preprint) (2009). arXiv:0904.2009

  62. Knutson, A.: The symplectic and algebraic geometry of Horn’s problem. Linear Algebra Appl. 319(1–3), 61–81 (2000)

    MathSciNet  MATH  Google Scholar 

  63. Kostant, B.: On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. École Norm. Sup. (4) 6(1973), 413–455 (1974)

    MathSciNet  MATH  Google Scholar 

  64. Kuhn, H.W.: Linear inequalities and the Pauli principle. In: Proceedings of Symposia Applied Mathematics, vol. 10, pp. 141–147. American Mathematical Society, Providence (1960)

  65. Kummer, H.: \(n\)-representability problem for reduced density matrices. J. Math. Phys. 8, 2063–2081 (1967)

    ADS  MathSciNet  Google Scholar 

  66. Landsman, K.: Foundations of Quantum Theory, Fundamental Theories of Physics, vol. 188. Springer, Cham (2017)

    MATH  Google Scholar 

  67. Lang, S.: Algebra. GTM, vol. 211, 3rd edn. Springer, New York (2002)

    MATH  Google Scholar 

  68. Levy, M.: Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. U.S.A. 76(12), 6062 (1979)

    ADS  MathSciNet  Google Scholar 

  69. Lieb, E.H.: Density functionals for coulomb systems. Int. J. Quant. Chem. 24(3), 243 (1983)

    Google Scholar 

  70. Liebert, J., Castillo, F., Labbé, J.-P., Schilling, C.: Foundation of one-particle reduced density matrix functional theory for excited states. J. Chem. Theory Comput. 18, 124–140 (2022)

    Google Scholar 

  71. Liu, Y.-K., Christandl, M., Verstraete, F.: Quantum computational complexity of the \(n\)-representability problem: Qma complete. Phys. Rev. Lett. 98, 110503, 4 (2007)

    ADS  Google Scholar 

  72. Löwdin, P.O.: Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. (2) 97, 1474–1489 (1955)

    ADS  MathSciNet  MATH  Google Scholar 

  73. Lukowski, T., Parisi, M., Williams, L.: The positive tropical grassmannian, the hypersimplex, and the \(m=2\) amplituhedron, p. 50 (preprint) (2020). arXiv:2002.06164

  74. Maciazek, T., Tsanov, V.: Quantum marginals from pure doubly excited states. J. Phys. A 50(46), 465304 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Manecke, S., Sanyal, R., So, J.: \(S\)-hypersimplices, pulling triangulations, and monotone paths. Electron. J. Combin. 27(3), 14 (2020)

    MathSciNet  MATH  Google Scholar 

  76. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics, 2nd edn. Springer, New York (2011)

    MATH  Google Scholar 

  77. Martínez-Sandoval, L., Padrol, A.: The convex dimension of hypergraphs and the hypersimplicial Van Kampen-Flores theorem (2020). Preprint arXiv:1909.01189

  78. Matteo, N.: Combinatorially two-orbit convex polytopes. Discrete Comput. Geom. 55(3), 662–680 (2016)

    MathSciNet  MATH  Google Scholar 

  79. Mazziotti, D.A.: Anti-hermitian contracted schrödinger equation: direct determination of the two-electron reduced density matrices of many-electron molecules. Phys. Rev. Lett. 97, 143002 (2006)

    ADS  Google Scholar 

  80. Mazziotti, D.A. (ed.): Reduced-density-matrix mechanics: with application to many-electron atoms and molecules. In: Advances in Chemical Physics, vol. 134. Wiley (2007)

  81. Mazziotti, D.A. (ed.): Structure of fermionic density matrices: complete \(n\)-representability conditions. Phys. Rev. Lett. 108, 26300 (2012)

  82. Mazziotti, D.A (ed.): Pure-\(n\)-representability conditions of two-fermion reduced density matrices. Phys. Rev. A 94, 032516 (2016)

  83. Mirsky, L.: Results and problems in the theory of doubly-stochastic matrices. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1, 319–334 (1962/63)

  84. National Research Council.: Mathematical Challenges from Theoretical/Computational Chemistry. The National Academies Press, Washington, DC (1995)

  85. Nielsen, M.A., Isaac, L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  86. Onn, S.: Geometry, complexity, and combinatorics of permutation polytopes. J. Combin. Theory Ser. A 64(1), 31–49 (1993)

    MathSciNet  MATH  Google Scholar 

  87. Padrol, A., Philippe, E.: Sweeps, polytopes, oriented matroids, and allowable graphs of permutations (preprint), p. 41 (2021). arXiv:2102.06134

  88. Parisi, M., Sherman-Bennett, M., Williams, L.: The \(m=2\) amplituhedron and the hypersimplex: signs, clusters, triangulations. Eulerian numbers (preprint), p. 74 (2021). arXiv:2104.08254

  89. Pauli, W.: Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31(1), 765–783 (1925)

    ADS  MATH  Google Scholar 

  90. Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN 6, 1026–1106 (2009)

    MathSciNet  MATH  Google Scholar 

  91. Rado, R.: An inequality. J. London Math. Soc. 27, 1–6 (1952)

    MathSciNet  MATH  Google Scholar 

  92. Reiner, V.: The generalized Baues problem, new perspectives in algebraic combinatorics (Berkeley, CA, 1996–97), In: Mathematical Sciences in Research Institute Publication, vol. 38, pp. 293–336. Cambridge Univ. Press, Cambridge (1999)

  93. Ressayre, N.: Geometric invariant theory and the generalized eigenvalue problem. Invent. Math. 180(2), 389–441 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  94. Rockafellar, R.T.: Princeton Landmarks in Mathematics. Convex Analysis, Princeton University Press, Princeton (1997)

    Google Scholar 

  95. Ruskai, M.B.: Connecting \(N\)-representability to Weyl’s problem: the one-particle density matrix for \(N=3\) and \(R=6\). J. Phys. A 40(45), F961–F967 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  96. Sanyal, R., Saunderson, J.: Spectral polyhedra, p. 13 (preprint) (2020). arXiv:2001.04361

  97. Sanyal, R., Sottile, F., Sturmfels, B.: Orbitopes. Mathematika 57(2), 275–314 (2011)

    MathSciNet  MATH  Google Scholar 

  98. Schilling, C.: The Quantum Marginal Problem. Mathematical Results in Quantum Mechanics, pp. 165–176. World Sci. Publ, Hackensack, NJ (2015)

    MATH  Google Scholar 

  99. Schilling, C., Altunbulak, M., Knecht, S., Lopes, A., Whitfield, J.D., Christandl, M., Gross, D., Reiher, M.: Generalized Pauli constraints in small atoms. Phys. Rev. A 97, 052503 (2018)

    ADS  Google Scholar 

  100. Schilling, C., Gross, D., Christandl, M.: Pinning of fermionic occupation numbers. Phys. Rev. Lett. 110, 040404 (2013)

    ADS  Google Scholar 

  101. Schilling, C., Pittalis, S.: Ensemble reduced density matrix functional theory for excited states and hierarchical generalization of Pauli’s exclusion principle. Phys. Rev. Lett. 127, 023001 (2021)

    ADS  MathSciNet  Google Scholar 

  102. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. Wiley (1986)

  103. Schulte, E.: Symmetry of Polytopes and Polyhedra. Handbook of Discrete and Computational Geometry. Series in Discrete Mathematical Application, pp. 311–330. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  104. Schürmann, A.: Exploiting symmetries in polyhedral computations, discrete geometry and optimization. In: Fields Institute Communication, vol. 69, pp. 265–278. Springer, New York (2013)

  105. Serre, J.P.: Linear Representations of Finite Groups, vol. 42, Springer (1977)

  106. Stanley, R.P., Cohen-Macaulay complexes. In: Higher Combinatorics (Proceedings of NATO Advanced Study Institute, vol. 1977, pp. 51–62. Dordrecht, Boston (1976)

  107. Stanley, R.P.: Enumerative combinatorics. Cambridge Studies in Advanced Mathematics, vol. 49, 1, 2nd edn. Cambridge University Press, Cambridge (2012)

  108. Stanley, R.P.: Valid orderings of real hyperplane arrangements. Discrete Comput. Geom. 53(4), 951–964 (2015)

    MathSciNet  MATH  Google Scholar 

  109. The Sage Developers.: Sagemath, the Sage Mathematics Software System (Version 9.3) (2021). https://www.sagemath.org

  110. Valone, S.M.: Consequences of extending 1-matrix energy functionals from pure-state representable to all ensemble representable 1-matrices. J. Chem. Phys. 73(3), 1344 (1980)

    ADS  MathSciNet  Google Scholar 

  111. Walter, M.: Multipartite quantum states and their marginals, Ph.D. thesis, ETH Zürich, Zürich, pp. xi+201 (2014)

  112. Watanabe, S.: Über die anwendung thermodynamischer begriffe auf den normalzustand des atomkern. Z. Physik. 113(7–8), 482–513 (1939)

    ADS  MATH  Google Scholar 

  113. Yang, C.N.: Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. 34, 694–704 (1962)

    ADS  MathSciNet  Google Scholar 

  114. Ziegler, G.M.: Lectures on Polytopes. GTM, vol. 152. Springer, New York (1995)

Download references

Acknowledgements

The authors are thankful to Pauline Gagnon, Fulvio Gesmundo, Allen Knutson, Fu Liu, Georgoudis Panagiotis, Nicholas Proudfoot, Raman Sanyal and Lauren Williams for valuable discussions. The authors express their gratitude to Manfred Lehn and Günter M. Ziegler for sparking this fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Castillo.

Additional information

Communicated by David Perez-Garcia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the grant ANR-17-CE40-0018 of the French National Research Agency ANR (project CAPPS) (A.P. and E.P.) and by the German Research Foundation (Grant SCHI 1476/1-1) (J.L. and C.S.) and by the UK Engineering and Physical Sciences Research Council (Grant EP/P007155/1) (C.S.) and by the grant FONDECYT 1221133 of the Chilean National Research Agency (ANID)

Appendices

Appendix A. H-Representation of the Lineup Polytope of the Hypersimplex \(\textsf{H}(3,6)\)

The H-representation of the 10-lineup polytope of the five-dimensional hypersimplex \(\textsf{H}(3,6)\) has 72 inequalities represented below. The inequalities arise in a hierarchy while increasing r from 1 to 10. The weights are taken in the Pauli simplex \(\mathsf {\Delta }_{9}\), so that \(1\ge w_1 \ge w_2 \ge \cdots \ge w_{10} \ge 0\) and \(\sum _{i=1}^{10}w_i=1\). Since \(\sum _{i=1}^6x_i=3\) and \(\sum _{i=1}^{10}w_i=1\), there are many ways to represent the matrices if one does not use the orthogonal complement of these hyperplanes. We chose the representation where the last coefficient of the rays is zero; as a consequence, all coefficients are nonnegative.

figure b
figure c

Appendix B. Generalized Exclusion Inequalities for Fermions

The Pauli exclusion principle is equivalent to the first of the following two inequalities which describe the case \(r=1\):

$$\begin{aligned} x_1^{\downarrow } \le 1, \sum _{i=1}^{d-1} x_i^{\downarrow } \le N. \end{aligned}$$

The second equation is equivalent to \(x_d^{\downarrow }\ge 0\), which implies that all coordinates should be indeed nonnegative, which is inherently true in the physical context. To illustrate larger values, it is more compact to express them in a matrix. Following Theorem 6, after solving the case (rNd), when increasing the value of r by 1, the minimal case \((r+1,N',d')\) to consider is such that \(N'=N+1\) and \(d'=d+2\). Below, we represent this minimal case by the coefficients located between the two vertical bars. The matrix gives the result for \(r=8\), so in dimension \(d=14\). The right-hand side term involving N is determined using Proposition 6.18.

figure d

Appendix C. Generalized Exclusion Inequalities for Bosons

The case \(r=1\) has one inequality

$$\begin{aligned} \sum _{i=1}^{d-1} x_i^{\downarrow } \le N. \end{aligned}$$

It is equivalent to \(x_d^{\downarrow }\ge 0\), which implies that all coordinates should be indeed nonnegative, which is inherently true in the physical context. To illustrate larger values, we again express the new inequalities in a matrix. Using Theorem 7, after solving the case (rNd), when increasing the value of r by 1, the minimal case \((r+1,N',d')\) to consider is such that \(N'=N+1\) and \(d'=d+1\). Below, we represent this minimal case by the coefficients located on the left of the vertical bar. The matrix gives the result for \(r=8\), so in dimension \(d=8\). The right-hand side term involving N is determined by adapting Proposition 6.18.

figure e

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, F., Labbé, JP., Liebert, J. et al. An Effective Solution to Convex 1-Body N-Representability. Ann. Henri Poincaré 24, 2241–2321 (2023). https://doi.org/10.1007/s00023-022-01264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01264-z

Mathematics Subject Classification

Navigation