Skip to main content
Log in

Modeling of Surface Flow and Infiltration During Surface Irrigation Advance Based on Numerical Solution of Saint–Venant Equations Using Preissmann's Scheme

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this research, a full hydrodynamic model based on the numerical solution of Saint–Venant equations is described to simulate the advance phase of surface irrigation. The full hydrodynamic model is the complete form of Saint–Venant equations. This model is the most complex and accurate among all models and can be applied for analyzing the flow hydraulics and managing surface irrigation. The Preissmann finite difference scheme was used for implicit discretizing terms of the equations. The model presented herein is able to give cumulative infiltration and hydraulic properties including discharge, velocity and depth of flow for any time and distance which can be introduced as an upper boundary condition in water transport models in soil. The model was used to evaluate different situations and soil textures, and the results were compared with results of SIRMOD software, which indicated that relative error was less than 4%. The accuracy of the model was also evaluated in comparison with observed data, and the result showed that the model is able to estimate advance time with normalized root-mean-square error (NRMSE) of less than 8%. Conventional relationships of surface and subsurface shape factor overestimate them by as much as 4.7 and 17.2%, respectively, based on the inflow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi, F., Shooshtari, M. M., & Feyen, J. (2003). Evaluation of various surface irrigation numerical simulation models. Journal of Irrigation and Drainage Engineering, 129(3), 208–213. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(208).

    Article  Google Scholar 

  • Abdollahi, S., Madadi, M., et al. (2021). Monitoring and investigating dust phenomenon on using remote sensing science, geographical information system and statistical methods. Applied Water Science, 11, 111. https://doi.org/10.1007/s13201-021-01419-z.

    Article  Google Scholar 

  • Adamala, S., Raghuwansh, N. S., & Mishra, A. (2014). Development of surface irrigation systems design and evaluation software (SIDES). Computers and Electronics in Agriculture, 100, 100–109.

    Article  Google Scholar 

  • Banti, M., Zissis, Th., & Anastasiadou-Partheniou, E. (2011). Furrow irrigation advance simulation using a surface–subsurface interaction model. Journal of Irrigation and Drainage Engineering, 137(5), 304–314. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000293.

    Article  Google Scholar 

  • Bassett, D.L., Fangmeier, D.D., Sterlkoff, T. (1983). Hydraulics of surface irrigation, Jensen ed., ASAE, St. Joseph, Mich.

  • Bautista, E., Clemments, A. J., & Strelkoff, T. S. (2009b). Optimal and postirrigation volume balance infiltration parameter estimates for basun irrigation. Journal of Irrigation and Drainage Engineering, 135, 579–587.

    Article  Google Scholar 

  • Bautista, E., Clemments, A. J., Strelkoff, T. S., & Schlegel, J. (2009a). Modern analysis of surface irrigation systems with WinSRFR. Agricultural Water Management, 96, 1146–1154.

    Article  Google Scholar 

  • Bautista, E., Strelkoff, T. S., & Clemments, A. J. (2012). Improved surface volume estimates for surface irrigation volume-balance calculations. Journal of Irrigation and Drainage Engineering, 138, 715–726.

    Article  Google Scholar 

  • Benami, A., Ofen, A. (1984). Irrigation engineering: Sprinkler, trickle, surface irrigation. In Principles, design and agricultural practices. Irrigation Engineering Scientific Publication, IIIC Bet Dagan.

  • Burguete, J., Lacasta, A., & Garcia-Navarro, P. (2014). SURCOS: A software tool to simulate irrigation and fertigation in isolated furrows and furrow networks. Computers and Electronics in Agriculture, 103, 91–103.

    Article  Google Scholar 

  • Clemmens, A. J., & Strelkoff, T. (2011). Zero-inertial recession for kinematic-wave model. Journal of Irrigation and Drainage Engineering, 137(4), 263–266. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000289.

    Article  Google Scholar 

  • Derakhshannia, et al. (2020). Corrosion and Deposition in Karoon River, Iran, Based on Hydrometric Stations. International Journal of Hydrology Science and Technology., 10(4), 334–345. https://doi.org/10.1504/IJHST.2020.108264.

    Article  Google Scholar 

  • Elliott, R. L., & Walker, W. R. (1982). Field evaluation of furrow infiltration and advance functions. Transaction ASAE, 25, 396–400.

    Article  Google Scholar 

  • Fatahi, N. R., Yaghoobi, P., Reaisi Vanani, H., et al. (2021). Eco-hydrologic stability zonation of dams and power plants using the combined models of SMCE and CEQUALW2. Applied Water Science, 11(109), 2021. https://doi.org/10.1007/s13201-021-01427-z.

    Article  Google Scholar 

  • Fattahi, N. R., Raeisi Vanani, H., Noori Pashaee, K., et al. (2021). Investigation on the effect of inclined crest step pool on scouring protection in erodible river beds. Natural Hazards. https://doi.org/10.1007/s11069-021-04999-w.

    Article  Google Scholar 

  • Gillies, M. H., & Smith, R. J. (2015). SISCO-Surface irrigation calibration and optimization. Irrigation Science, 33, 339–355.

    Article  Google Scholar 

  • Golian, et al. (2020). Prediction of tunnelling impact on flow rates of adjacent extraction water wells. Quarterly Journal of Engineering Geology and Hydrogeology, 53(2), 236. https://doi.org/10.1144/qjegh2019-055.

    Article  Google Scholar 

  • Guardo, M., Oad, R., & Podmore, T. H. (2000). Comparison of zero-inertia and volume balance advance-infiltration models. Journal of Irrigation and Drainage Engineering, 126(6), 457–465. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:6(457)

    Article  Google Scholar 

  • Hashemi Rad, S.M. (2011). Evaluation methods for estimating infiltration and infiltration equation parameters in Furrow Irrigation. In MSc Thesis of Irrigation and Drainage. Department of Irrigation and drainage. College of Agriculture. Ferdowsi University of Mashhad. (In Persian).

  • Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of computer simulation model ARC WHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27, 337–350.

    Article  Google Scholar 

  • Javadinejad, S., Ostad-Ali-Askari, K., & Jafary, F. (2019). Using simulation model to determine the regulation and to optimize the quantity of chlorine injection in water distribution networks. Modeling Earth Systems and Environment, 5(3), 1015–1023. https://doi.org/10.1007/s40808-019-00587-x.

    Article  Google Scholar 

  • Nafchi, R. F., Samadi-Boroujeni, H., Vanani, H. R., et al. (2021). Laboratory investigation on erosion threshold shear stress of cohesive sediment in Karkheh Dam. Environmental Earth Sciences, 80, 681. https://doi.org/10.1007/s12665-021-09984-x.

    Article  Google Scholar 

  • Naghedifar, S. M., Ziaei, A. N., & Ansari, H. (2020). Numerical analysis and optimization of triggered furrow irrigation system. Irrigation Science, 2020, 1–20.

    Google Scholar 

  • Ostad-Ali-Askar, K., Su, R., & Liu, L. (2018b). Water resources and climate change. Journal of Water and Climate Change, 9(2), 239. https://doi.org/10.2166/wcc.2018.999.

    Article  Google Scholar 

  • Ostad-Ali-Askari, K., Shayannejad, M., & Eslamian, S. (2017a). Chapter No. 18: Deficit Irrigation: Optimization models. In Management of drought and water scarcity. Handbook of drought and water scarcity (Vol. 3, 1st ed., pp. 373–389). Taylor & Francis Publisher. Imprint: CRC Press. https://doi.org/10.1201/9781315226774..

  • Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H. (2017b). Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River Isfahan Iran. KSCE Journal of Civil Engineering, 21(1), 134–140. https://doi.org/10.1007/s12205-016-0572-8.

    Article  Google Scholar 

  • Ostad-Ali-Askari, et al. (2018a). Comparison of solutions of Saint-Venant equations by characteristics and finite difference methods for unsteady flow analysis in open channel. International Journal of Hydrology Science and Technology., 8(3), 229–243. https://doi.org/10.1504/IJHST.2018.093569.

    Article  Google Scholar 

  • Ostad-Ali-Askari, K., Ghorbanizadeh Kharazi, H., Shayannejad, M., & Zareian, M. J. (2019). Effect of management strategies on reducing negative impacts of climate change on water resources of the Isfahan-Borkhar aquifer using MODFLOW. River Research and Applications, 35(6), 611–631. https://doi.org/10.1002/rra.3463.

    Article  Google Scholar 

  • Ostad-Ali-Askari, K., & Shayannejad, M. (2020a). Impermanent changes investigation of shape factors of the volumetric balance model for water development in surface irrigation. Modeling Earth Systems and Environment, 6(3), 1573–1580. https://doi.org/10.1007/s40808-020-00771-4.

    Article  Google Scholar 

  • Ostad-Ali-Askari, K., Ghorbanizadeh Kharazi, H., Shayannejad, M., & Zareian, M. J. (2020b). Effect of Climate Change on Precipitation Patterns in an Arid Region Using GCM Models: Case Study of Isfahan-Borkhar Plain. Natural Hazards Review, 21(2), 04020006. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000367.

    Article  Google Scholar 

  • Ostad-Ali-Askari, K., & Shayannejad, M. (2021a). Computation of subsurface drain spacing in the unsteady conditions using Artificial Neural Networks (ANN). Applied Water Science, 11, 21. https://doi.org/10.1007/s13201-020-01356-3.

    Article  Google Scholar 

  • Ostad-Ali-Askari, K., & Shayan, M. (2021b). Subsurface drain spacing in the unsteady conditions by HYDRUS-3D and artificial neural networks. Arabian Journal of Geosciences, 14, 1936. https://doi.org/10.1007/s12517-021-08336-0.

    Article  Google Scholar 

  • Ostad-Ali-Askari, K., & Shayannejad, M. (2021c). Computation of subsurface drain spacing in the unsteady conditions using Artificial Neural Networks (ANN). Applied Water Science, 11, 21. https://doi.org/10.1007/s13201-020-01356-3.

    Article  Google Scholar 

  • Ostad-Ali-Askari, K., & Shayannejad, M. (2021d). Quantity and quality modelling of groundwater to manage water resources in Isfahan-Borkhar Aquifer. Environment, Development and Sustainability, 23, 15943–15959. https://doi.org/10.1007/s10668-021-01323-1.

    Article  Google Scholar 

  • Pirnazar, et al. (2018). The evaluation of the usage of the fuzzy algorithms in increasing the accuracy of the extracted land use maps. International Journal of Global Environmental Issues., 17(4), 307–321. https://doi.org/10.1504/IJGENVI.2018.095063.

    Article  Google Scholar 

  • Salehi-Hafshejani, et al. (2019). Determination of the height of the vertical filter for heterogeneous earth dams with vertical clay core. International Journal of Hydrology Science and Technology., 9(3), 221–235. https://doi.org/10.1504/IJHST.2019.102315.

    Article  Google Scholar 

  • Soroush, F., Fentonb, J. D., Mostafazadeh-Fard, B., Mousavi, S. F., & Abbasi, F. (2013). Simulation of furrow irrigation using the slow-change/ slow-flow equation. Journal of Agricultural Water Management, 116, 160–174. https://doi.org/10.1016/j.agwat.2012.07.008.

    Article  Google Scholar 

  • Tabuada, M. A., Rego, Z. J. C., Vachaud, G., & Pereira, L. S. (1995). Modelling of furrow irrigation advance with two-dimensional infiltration. Journal of Agricultural Water Management, 28(3), 201–221. https://doi.org/10.1016/0378-3774(95)01177-K.

    Article  Google Scholar 

  • Talebmorad, H., Koupai, J. A., Eslamian, S., Mousavi, S. F., Akhavan, S., Ostad-Ali-Askari, K., & Singh, V. P. (2021). Evaluation of the impact of climate change on reference crop evapotranspiration in Hamedan-Bahar plain. International Journal of Hydrology Science and Technology, 11(3), 333–347. https://doi.org/10.1504/IJHST.2021.114554.

    Article  Google Scholar 

  • Valiantzas, J. D. (1993). Border advance using improved volume balance model. Journal of Irrigation and Drainage Engineering, 119(6), 1006–1013.

    Article  Google Scholar 

  • Valiantzas, J. D. (1997). Volume balance irrigation advance equation: Variation of surface shape factor. Journal of Irrigation and Drainage Engineering, 123(4), 307–312.

    Article  Google Scholar 

  • Vanani, et al. (2017). Development of a new method for determination of infiltration coefficients in furrow irrigation with natural non-uniformity of slope. Sustainable Water Resources Management, 3, 163–169. https://doi.org/10.1007/s40899-017-0091-x.

    Article  Google Scholar 

  • Walker, W.R. (2003). SIRMOD III-Surface irrigation simulation, evaluation and design, guide and technical documentation, Dept. of Biological Irrigation Engineering, Utah State Univ., Logan UT.

  • Walker, W. R., & Humpherys, A. S. (1983). Kinematic-wave furrow irrigation model. Journal of Irrigation and Drainage Engineering, 109(4), 377–392. https://doi.org/10.1061/(ASCE)0733-9437(1983)109:4(377).

    Article  Google Scholar 

  • Wallender, W. W., & Rayej, M. (1990). Shooting method for Saint-Venant equations of furrow irrigation. Journal of Irrigation and Drainage Engineering, 116(1), 114–122. https://doi.org/10.1061/(ASCE)0733-9437(1990)116:1(114)

    Article  Google Scholar 

  • Weihan, W., Wenying, P. (2011). Simple estimation method on Kostiakov infiltration parameters in border irrigation. In Scientific Research Fund of Zhejiang Provincial Education Department & Scientific Research Fund of Zhejiang Water Conservancy and Hydropower College. IEEE, pp. 1940–1942.

  • Zerihun, D., Furman, A., Sanchez, C. A., & Warrick, A. W. (2008). Development of simplified solutions for modeling recession in basins. Journal of Irrigation and Drainage Engineering, 134(3), 327–340. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:3(327).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Shayannejad or Kaveh Ostad-Ali-Askari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayannejad, M., Ghobadi, M. & Ostad-Ali-Askari, K. Modeling of Surface Flow and Infiltration During Surface Irrigation Advance Based on Numerical Solution of Saint–Venant Equations Using Preissmann's Scheme. Pure Appl. Geophys. 179, 1103–1113 (2022). https://doi.org/10.1007/s00024-022-02962-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02962-9

Keywords

Navigation