Skip to main content
Log in

Parameterized Telescoping Proves Algebraic Independence of Sums

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Usually creative telescoping is used to derive recurrences for sums. In this article we show that the non-existence of a creative telescoping solution, and more generally, of a parameterized telescoping solution, proves algebraic independence of certain types of sums. Combining this fact with summation-theory shows transcendence of whole classes of sums. Moreover, this result throws new light on the question why, for example, Zeilberger’s algorithm fails to find a recurrence with minimal order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramov S.A.: The summation of rational functions. Zh. Vychisl. Mat. Mat. Fiz. 11, 1071–1075 (1971)

    MathSciNet  MATH  Google Scholar 

  2. Abramov S.A.: When does Zeilberger’s algorithm succeed?. Adv. Appl. Math. 30(3), 424–441 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abramov S.A., Petkovšek M.: Rational normal forms and minimal decompositions of hypergeometric terms. J. Symbolic Comput. 33(5), 521–543 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer A., Petkovšek M.: Multibasic and mixed hypergeometric Gosper-type algorithms. J. Symbolic Comput. 28(4-5), 711–736 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bronstein M.: On solutions of linear ordinary difference equations in their coefficient field. J. Symbolic Comput. 29(6), 841–877 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gosper R.W.: Decision procedures for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. USA 75(1), 40–42 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Karr M.: Summation in finite terms. J. Assoc. Comput. Mach. 28(2), 305–350 (1981)

    MathSciNet  MATH  Google Scholar 

  8. Paule P., Nemes I.: A canonical form guide to symbolic summation. In: Miola, A., Temperini, M. (eds) Advances in the Design of Symbolic Computation Systems, pp. 84–110. Springer, Vienna (1997)

    Google Scholar 

  9. Paule P.: Greatest factorial factorization and symbolic summation. J. Symbolic Comput. 20(3), 235–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Paule, P.: Contiguous relations and creative telescoping. Preprint (2004)

  11. Paule, P., Riese, A.: A Mathematica q−analogue of Zeilberger’s algorithm based on an algebraically motivated aproach to q−hypergeometric telescoping. In: Ismail, M., Rahman, M. (eds.) Special Functions, q−Series and Related Topics, Fields Inst. Commun., 14, pp. 179–210. AMS, Providence, RI (1997)

  12. Paule P., Schorn M.: A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symbolic Comput. 20(5-6), 673–698 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Paule P., Schneider C.: Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31(2), 359–378 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Petkovšek, M.,Wilf, H.S., Zeilberger, D.: A = B. A. K. Peters, Ltd.,Wellesley, MA (1996)

  15. Schneider, C.: Symbolic Summation in Difference Fields. PhD Thesis, J. Kepler University, Linz (2001)

  16. Schneider C.: A collection of denominator bounds to solve parameterized linear difference equations in ΠΣ-extensions. An. Univ. Timişoara Ser. Mat.-Inform. 42(2), 163–179 (2004)

    MATH  Google Scholar 

  17. Schneider C.: The summation package Sigma: underlying principles and a rhombus tiling application. Discrete Math. Theor. Comput. Sci. 6(2), 365–386 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Schneider C.: Degree bounds to find polynomial solutions of parameterized linear difference equations in ΠΣ-fields. Appl. Algebra Engrg. Comm. Comput. 16(1), 1–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schneider C.: Product representations in ΠΣ-fields. Ann. Combin. 9(1), 75–99 (2005)

    Article  MATH  Google Scholar 

  20. Schneider C.: Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Equations Appl. 11(9), 799–821 (2005)

    Article  MATH  Google Scholar 

  21. Schneider C.: Simplifying Sums in ΠΣ*-Extensions. J. Algebra Appl. 6(3), 415–441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schneider, C.: Symbolic summation assists combinatorics. Sém. Lothar. Combin. 56:#B56b. (2007)

    Google Scholar 

  23. Schneider C.: A refined difference field theory for symbolic summation. J. Symbolic Comput. 43(9), 611–644 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. van der Poorten, A.: A proof that Euler missed. . . Apéry’s proof of the irrationality of ζ(3). Math. Intelligencer 1(4), 195–203 (1979)

    Google Scholar 

  25. Zeilberger D.: The method of creative telescoping. J. Symbolic Comput. 11(3), 195–204 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schneider.

Additional information

Supported by the SFB-grant F1305 and the grant P20347-N18 of the Austrian FWF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, C. Parameterized Telescoping Proves Algebraic Independence of Sums. Ann. Comb. 14, 533–552 (2010). https://doi.org/10.1007/s00026-011-0076-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-011-0076-7

Mathematics Subject Classification

Keywords

Navigation