Skip to main content
Log in

Cubic autocatalysis in a reaction–diffusion annulus: semi-analytical solutions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Semi-analytical solutions for cubic autocatalytic reactions are considered in a circularly symmetric reaction–diffusion annulus. The Galerkin method is used to approximate the spatial structure of the reactant and autocatalyst concentrations. Ordinary differential equations are then obtained as an approximation to the governing partial differential equations and analyzed to obtain semi-analytical results for this novel geometry. Singularity theory is used to determine the regions of parameter space in which the different types of steady-state diagram occur. The region of parameter space, in which Hopf bifurcations can occur, is found using a degenerate Hopf bifurcation analysis. A novel feature of this geometry is the effect, of varying the width of the annulus, on the static and dynamic multiplicity. The results show that for a thicker annulus, Hopf bifurcations and multiple steady-state solutions occur in a larger portion of parameter space. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with numerical solutions of the governing partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corbel J.M.L., Van Lingen J.N.J., Zevenbergen J.F., Gijzeman O.L.J., Meijerink A.: Strobes: pyrotechnic compositions that show a curious oscillatory combustion. Angew. Chem. Int. Ed. 52, 290–303 (2013)

    Article  Google Scholar 

  2. Sagues F., Epstein I.R.: Nonlinear chemical dynamics. Dalton Trans. 7, 1201–1217 (2003)

    Article  Google Scholar 

  3. Gray P., Scott S.K.: Autocatalytic reactions in the isothermal continuous, stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38, 29–43 (1983)

    Article  Google Scholar 

  4. Gray P., Scott P.: Autocatalytic reactions in the isothermal continuous, stirred tank reactor: oscillations and instabilities in the system a + 2b to 3b; b to c. Chem. Eng. Sci. 39, 1087–1097 (1984)

    Article  Google Scholar 

  5. Kay S.R., Scott S.K., Lignola P.G.: The application of singularity theory to isothermal autocatalytic reactions: the influence of uncatalysed reactions. Proc. R. Soc. Lond. A 409, 433–448 (1987)

    Article  MathSciNet  Google Scholar 

  6. Scott S.K.: Isolas, mushrooms and oscillations in isothermal, autocatalytic reaction–diffusion equations. Chem. Eng. Sci. 42, 307–315 (1987)

    Article  Google Scholar 

  7. Kay S.R., Scott S.K.: Multiple stationary states, sustained oscillations and transient behavior in autocatalytic reaction–diffusion equations. Proc. R. Soc. Lond. A 418, 345–364 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Marchant T.R.: Cubic autocatalytic reaction–diffusion equations: semi-analytical solutions. Proc. R. Soc. Lond. A 458, 873–888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tam W., Horstemke W., Noszticzius Z., Swinney H.L.: Sustained spiral waves in a continuously fed unstirred chemical reactor. J. Chem. Phys. 88, 3395–3396 (1988)

    Article  Google Scholar 

  10. Bagyan S., Mair T., Dulos E., Boissonade J., DeKepper P., Muller S.: Glycolytic oscillations and waves in an open spatial reactor: Impact of feedback regulation of phosphofructokinase. Biophys. Chem. 116, 67–76 (2005)

    Article  Google Scholar 

  11. Lavrova A., Bagyan S., Mair T., Hauser M., Schimansky-Geier L.: Modeling of glycolytic wave propagation in an open spatial reactor with inhomogeneous substrate flux. Biosystems 97, 127–133 (2009)

    Article  Google Scholar 

  12. Chaplain M.J., Ganesh M., Graham I.G.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42, 387–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Roose T., Chapman S.J., Maini P.K.: Mathematical models of avascular tumor growth. SIAM Rev. 49, 179–208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nie Q., Zhang Y.T., Zhao R.: Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 214, 521–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiangguo L., Simon T.: Semi-implicit spectral collocation methods for reaction–diffusion equations on annuli. Numer. Methods Partial Differ. Equ. 27, 1113–1129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farr W.W., Golubitsky M.: Rotating chemical waves in the Gray–Scott model. SIAM J. Appl. Math. 52, 181–221 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lubkin S., Rand R.: Oscillatory reaction–diffusion equations on rings. J. Math. Biol. 32, 617–632 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bar M., Bangia A.K., Kevrekidis I.G.: Bifurcation and stability analysis of rotating chemical spirals in circular domains: boundary-induced meandering and stabilization. Phys. Rev. E 67, 056126 (2003)

    Article  MathSciNet  Google Scholar 

  19. Tsai J.C.: Rotating spiral waves in lambda-omega systems on circular domains. Phys. D 239, 1007–1025 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gray B.G., Roberts M.J.: A method for the complete qualitative analysis of two coupledordinary differential equations dependent on three parameters. Proc. R. Soc. Lond. A 416, 361–389 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Balakotaiah V., Luss D.: Multiplicity features of reacting systems. Chem. Eng. Sci. 38, 1709–1721 (1983)

    Article  Google Scholar 

  22. Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  23. Golubitsky M., Schaeffer D.G.: Singularities and Groups in Bifurcation Theory. Springer, New York (1985)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Marchant.

Additional information

This paper is dedicated to Professor James Hill on the occasion of his 70th birthday. Prof. Hill has been a source of inspiration to the authors, over many years, due to his significant contributions to Applied Mathematics and leadership of the field within Australia. He has also played a key role in the support and mentoring of a new generation of Applied Mathematicians that will influence the field for many years to come.

This article is part of the topical collection “James Hill” guest edited by Scott McCue and Natalie Thamwattana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharthi, M.R., Marchant, T.R. & Nelson, M.I. Cubic autocatalysis in a reaction–diffusion annulus: semi-analytical solutions. Z. Angew. Math. Phys. 67, 65 (2016). https://doi.org/10.1007/s00033-016-0660-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0660-0

Mathematics Subject Classification

Keywords

Navigation