Skip to main content
Log in

Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Epigenetic mechanisms are increasingly recognised as integral to the adaptation of species that face environmental changes. In particular, empirical work has provided important insights into the contribution of epigenetic mechanisms to the persistence of clonal species, from which a number of verbal explanations have emerged that are suited to logical testing by proof-of-concept mathematical models. Here, we present a stochastic agent-based model and a related deterministic integrodifferential equation model for the evolution of a phenotype-structured population composed of asexually-reproducing and competing organisms which are exposed to novel environmental conditions. This setting has relevance to the study of biological systems where colonising asexual populations must survive and rapidly adapt to hostile environments, like pathogenesis, invasion and tumour metastasis. We explore how evolution might proceed when epigenetic variation in gene expression can change the reproductive capacity of individuals within the population in the new environment. Simulations and analyses of our models clarify the conditions under which certain evolutionary paths are possible and illustrate that while epigenetic mechanisms may facilitate adaptation in asexual species faced with environmental change, they can also lead to a type of “epigenetic load” and contribute to extinction. Moreover, our results offer a formal basis for the claim that constant environments favour individuals with low rates of stochastic phenotypic variation. Finally, our model provides a “proof of concept” of the verbal hypothesis that phenotypic stability is a key driver in rescuing the adaptive potential of an asexual lineage and supports the notion that intense selection pressure can, to an extent, offset the deleterious effects of high phenotypic instability and biased epimutations, and steer an asexual population back from the brink of an evolutionary dead end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Servedio M.R., Brandvain Y., Dhole S., Fitzpatrick C.L., Goldberg E.E., Stern C.A., Van Cleve J., Yeh D.J.: Not just a theory—the utility of mathematical models in evolutionary biology. PLoS Biol. 12, e1002017 (2014)

    Article  Google Scholar 

  2. Bonduriansky R., Crean A.J., Day T.: The implications of nongenetic inheritance for evolution in changing environments. Evol. Appl. 5, 192–201 (2012)

    Article  Google Scholar 

  3. Odling-Smee F.J., Laland K.N., Feldman M.W.: Niche Construction: The Neglected Process in Evolution, Issue 37 of Monographs in Population Biology. Princeton University Press, Princeton (2003)

    Google Scholar 

  4. Barcellos-Hoff M.H., Lyden D., Wang T.C.: The evolution of the cancer niche during multistage carcinogenesis. Nat. Rev. Cancer 13, 511–518 (2013)

    Article  Google Scholar 

  5. Lujambio A., Esteller M.: How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle 8, 377–382 (2009)

    Article  Google Scholar 

  6. Esteller M., Corn P.G., Baylin S.B., Herman J.G.: A gene hypermethylation profile of human cancer. Cancer Res. 61, 3225–3229 (2001)

    Google Scholar 

  7. House M.G., Herman J.G., Guo M.Z., Hooker C.M., Schulick R.D., Lillemoe K.D. et al.: Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann. Surg. 238, 423 (2003)

    Google Scholar 

  8. Sharma S.V., Lee D.Y., Li B., Quinlan M.P., Takahashi F., Maheswaran S. et al.: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010)

    Article  Google Scholar 

  9. Pisco A.O., Brock A., Zhou J., Moor A., Mojtahedi M., Jackson D., Huang S.: Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat. Commun. 4, 2467 (2013)

    Article  Google Scholar 

  10. Gupta P.B., Fillmore C.M., Jiang G., Shapira S.D., Tao K., Kuperwasser C., Lander E.S.: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011)

    Article  Google Scholar 

  11. Verhoeven K.J., Preite V.: Epigenetic variation in asexually reproducing organisms. Evolution 68, 644–655 (2014)

    Article  Google Scholar 

  12. Richards C.L., Schrey A.W., Pigliucci M.: Invasion of diverse habitats by few 385 Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 15, 1016–1025 (2012)

    Article  Google Scholar 

  13. Shea N., Pen I., Uller T.: Three epigenetic information channels and their different roles in evolution. J. Evol. Biol. 24, 1178–1187 (2011)

    Article  Google Scholar 

  14. Chisholm R.H., Lorenzi T., Lorz A., Larsen A.K., Nevesde Almeida L., Escargueil A. et al.: Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation. Cancer Res. 75, 930–939 (2015)

    Article  Google Scholar 

  15. Gudelj I., Coman C.D., Beardmore R.E.: Classifying the role of trade-offs in the evolutionary diversity of pathogens. Proc. R. Soc. A 462, 97–116 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lavi O., Greene J., Levy D., Gottesman M.: Simplifying the complexity of resistance heterogeneity in metastatic cancer. Trends Mol. Med. 20, 129–136 (2014)

    Article  Google Scholar 

  17. Lorenzi T., Chisholm R.H., Desvillettes L., Hughes B.D.: Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments. J. Theor. Biol. 7, 166–176 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lorenzi T., Chisholm R.H., Melensi M., Lorz A., Delitala M.: Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion. Immunology 146, 271–280 (2015)

    Article  Google Scholar 

  19. Lorz A., Lorenzi T., Hochberg M.E., Clairambault J., Perthame B.: Populational adaptive evolution, chemotherapeutic resistance and multiple anticancer therapies. ESAIM Math. Model. Numer. Anal. 47, 377–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Champagnat N., Ferrière R., Méléard S.: Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol. 69, 297–321 (2006)

    Article  MATH  Google Scholar 

  21. Champagnat N., Ferrière R., Ben Arous G.: The canonical equation of adaptive dynamics: a mathematical view. Selection 2, 73–83 (2001)

    Article  Google Scholar 

  22. Deroulers C., Aubert M., Badoual M., Grammaticos B.: Modeling tumor cell migration: from microscopic to macroscopic models. Phys. Rev. E 79, 031917 (2009)

    Article  MathSciNet  Google Scholar 

  23. Sengers B.G., Please C.P., Oreffo R.O.C.: Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J. R. Soc. Interface 4, 1107–1117 (2007)

    Article  Google Scholar 

  24. Simpson M.J., Landman K.A., Hughes B.D., Fernando A.E.: A model for mesoscale patterns in motile populations. Phys. A 389, 1412–1424 (2010)

    Article  Google Scholar 

  25. Simpson M.J., Landman K.A., Hughes B.D.: Multi-species simple exclusion processes. Phys. A 388, 399–406 (2009)

    Article  Google Scholar 

  26. Calsina À., Cuadrado S., Desvillettes L., Raoul G.: Asymptotics of steady states of a selection-mutation equation for small mutation rate. Proc. R. Soc. Edinb. A 143, 1123–1146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chisholm, R.H., Lorenzi, T., Lorz, A.: Effects of an advection term in nonlocal Lotka-Volterra equations. Commun. Math. Sci. 14, 1181–1188 (2016)

  28. Desvillettes L., Jabin P.-E., Mischler S., Raoul G.: On selection dynamics for continuous structured populations. Commun. Math. Sci. 6, 729–747 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lorenzi T., Lorz A., Restori G.: Asymptotic dynamics in populations structured by sensitivity to global warming and habitat shrinking. Acta Appl. Math. 131, 49–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lorz A., Mirrahimi S., Perthame B.: Dirac mass dynamics in a multidimensional nonlocal parabolic equation. Commun. Partial Differ. Equ. 36, 1071–1098 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mirrahimi S., Perthame B., Souganidis P.E.: Time fluctuations in a population model of adaptive dynamics. Ann. Inst. Henri Poincaré Non Linear Anal. 32, 41–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Perthame B., Barles G.: Dirac concentrations in Lotka–Volterra parabolic PDEs. Indiana Univ. Math. J. 57, 3275–3301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Raoul G.: Long time evolution of populations under selection and vanishing mutations. Acta Appl. Math. 114, 1–14 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kimura M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  35. Stoltzfus A., Yampolsky L.Y.: Climbing mount probable: mutation as a cause of nonrandomness in evolution. J. Hered. 100, 637–647 (2009)

    Article  Google Scholar 

  36. Haldane J.: The association of characters as a result of inbreeding and linkage. Ann. Eugen. 15, 15–23 (1949)

    Article  MATH  Google Scholar 

  37. Penington C.J., Hughes B.D., Landman K.A.: Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys. Rev. E 84, 041120 (2011)

    Article  Google Scholar 

  38. Doetsch G.: Handbuch der Laplace-Transformation, Band II. Birkhäuser, Basel (1955)

    Book  MATH  Google Scholar 

  39. Sagan H.: Boundary and Eigenvalue Problems in Mathematical Physics, Ch. 9. Wiley, New York (1961)

    MATH  Google Scholar 

  40. Miller J.C.P.: Parabolic cylinder functions. In: Abramowitz, M., Stegun, I.A. Handbook of Mathematical Functions, Ch. 19, Dover, New York (1965)

    Google Scholar 

  41. Temme N.M.: Parabolic cylinder functions. In: Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. NIST Handbook of Mathematical Functions Ch. 12, Cambridge University Press, Cambridge (2010)

    Google Scholar 

  42. Alfaro M., Carles R.: Explicit solutions for replicator-mutator equations: extinction versus acceleration. SIAM J. Appl. Math. 74, 1919–1934 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nowak M.A., May R.M.: Superinfection and the evolution of parasite virulence. Proc. R. Soc. Lond. B 255, 81–89 (1994)

    Article  Google Scholar 

  44. May R.M., Nowak M.A.: Coinfection and the evolution of parasite virulence. Proc. R. Soc. Lond. B 261, 209–215 (1995)

    Article  Google Scholar 

  45. May R.M., Nowak M.A.: Superinfection, metapopulation dynamics, and the evolution of diversity. J. Theor. Biol. 170, 95–114 (1994)

    Article  Google Scholar 

  46. Alfaro M., Coville J., Raoul G.: Travelling waves in a nonlocal reaction–diffusion equation as a model for a population structured by a space variable and a phenotypic trait. Commun. Partial Differ. Equ. 38, 2126–2154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Arnold A., Desvillettes L., Prévost C.: Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Commun. Pure Appl. Anal. 11, 83–96 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Bouin E., Calvez V.: Travelling waves for the cane toads equation with bounded traits. Nonlinearity 27, 2233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Bouin E., Calvez V., Meunier N., Mirrahimi S., Perthame B., Raoul G. et al.: Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration. C. R. Math. 350, 761–766 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Delitala M., Lorenzi T.: Asymptotic dynamics in continuous structured populations with mutations, competition and mutualism. J. Math. Anal. Appl. 389, 439–451 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hughes B.D., Fellner K.: Continuum models of cohesive stochastic swarms: the effect of motility on aggregation patterns. Phys. D 260, 26–48 (2013)

    Article  MathSciNet  Google Scholar 

  52. Jabin P.E., Raoul G.: On selection dynamics for competitive interactions. J. Math. Biol. 63, 493–517 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mirrahimi S., Perthame B.: Asymptotic analysis of a selection model with space. J. Math. Pures Appl. 104, 1108–1118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mirrahimi S., Raoul G.: Population structured by a space variable and a phenotypical trait. Theor. Popul. Biol. 84, 87–103 (2013)

    Article  MATH  Google Scholar 

  55. Perthame, B., Souganidis, P.E.: Rare mutations limit of a steady state dispersion trait model (2016). arXiv:1505.03420v3 [math.AP]

  56. Asatryan A.D., Komarova N.L.: Evolution of genetic instability in heterogeneous tumors. J. Theor. Biol. 396, 1–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Hughes B.D.: Random Walks and Random Environments, vol. 1. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry D. Hughes.

Additional information

This article is part of the topical collection “James Hill” guest edited by Scott McCue and Natalie Thamwattana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chisholm, R.H., Lorenzi, T., Desvillettes, L. et al. Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences. Z. Angew. Math. Phys. 67, 100 (2016). https://doi.org/10.1007/s00033-016-0690-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0690-7

Mathematics Subject Classification

Keywords

Navigation