Skip to main content
Log in

A Fully-Differential Chopper Capacitively-Coupled Amplifier with High Input Impedance for Closed-Loop Neural Recording

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a chopper capacitively-coupled instrumentation amplifier (CCIA) with high input impedance and low input-referred noise is presented for closed-loop neural recording. A recycling folded-cascode amplifier with an inherent common-mode feedback (CMFB) circuit is proposed as the first stage to tolerate large common-mode and differential in-band artifacts without any extra circuit since this structure has a large input common-mode range. Also, this structure can improve the noise efficiency factor (NEF) due to the smaller current consumption with the same gain and bandwidth than the conventional folded-cascode amplifier. The fully-differential common-source amplifier is used as the second stage for achieving a large output signal swing. Hence, the proposed chopper CCIA has a small total harmonic distortion (THD). The proposed pseudo resistor has a large amount and enough THD with less sensitivity to the PVT variations. It has made the small low cut-off frequency in the proposed chopper CCIA by using small capacitors in the DC servo-loop. Therefore, the total value of the on-chip capacitors is reduced. By reducing the low cut-off frequency in chopper CCIA, the positive feedback loop increases the input impedance at a low frequency more than the previous works using the positive feedback loop, despite the presence of DC servo-loop in the chopper CCIA. The proposed neural recording amplifier has been simulated with Cadence using TSMC 180 nm CMOS process with a 1.8 V power supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data.

References

  1. S. Barati, M. Yavari, An automatic action potential detector for neural recording implants. Circuits Systems Signal Process. 38(5), 1923–1941 (2019)

    Article  MathSciNet  Google Scholar 

  2. S. Barati, M. Yavari, An adaptive continuous-time incremental Σ∆ ADC for neural recording implants. Int. J. Circuit Theory Appl. 47(2), 187–203 (2019)

    Article  Google Scholar 

  3. S. Basir-Kazeruni, S. Vlaski, H. Salami, A. H. Sayed, and D. Marković, A blind adaptive stimulation artifact rejection (ASAR) engine for closed-loop implantable neuromodulation systems. In: 8th Int. IEEE/EMBS Conference on Neural Engineering (NER), pp. 186–189 (2017)

  4. R. Burt, J. Zhang, A micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path. IEEE J. Solid State Circuits 41(12), 2729–2736 (2006)

    Article  Google Scholar 

  5. H. Chandrakumar, D. Marković, A 15.2-ENOB 5-kHz BW 4.5 μW chopped CT Σ∆-ADC for artifact-tolerant neural recording front ends. IEEE J. of Solid-State Circuits 53(12), 3470–3483 (2018)

    Article  Google Scholar 

  6. H. Chandrakumar, D. Marković, A high dynamic-range neural recording chopper amplifier for simultaneous neural recording and stimulation. IEEE J. Solid-State Circuits 52(3), 645–656 (2017)

    Article  Google Scholar 

  7. H. Chandrakumar, D. Marković, A simple area-efficient ripple-rejection technique for chopped biosignal amplifiers. IEEE Trans. Circuits Syst. II Express Briefs 62(2), 189–193 (2015)

    Article  Google Scholar 

  8. H. Chandrakumar, D. Marković, An 80-mVpp linear-input range, 1.6 GΩ input impedance, low-power chopper amplifier for closed-loop neural recording that Is tolerant to 650-mVpp common-mode interference. IEEE J. Solid-State Circuits 52(11), 2811–2828 (2017)

    Google Scholar 

  9. C. Enz, G.C. Temes, Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  10. Q. Fan et al., A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE J. Solid-State Circuits 46(7), 1534–1543 (2011)

    Article  Google Scholar 

  11. Q. Fan, F. Sebastianen, H. Huijsing, and K. Makinwa, A 2.1 μW area-efficient capacitively-coupled chopper instrumentation amplifier for ECG applications in 65 nm CMOS. In: IEEE Asian Solid-State Circuits Conference, pp. 1–4, (2010)

  12. R.R. Harrison, C. Charles, A low-power low-noise CMOS amplifier For neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)

    Article  Google Scholar 

  13. Q. Li, X. Wang, Y. Liu, A 60 nV/√ Hz < 0.01%-THD ±200 mV-DC-rejection bio-sensing chopper amplifier with noise-nonlinearity-cancelling loop. IEEE Trans. Circuits Syst. II Express Briefs 67(2), 215–219 (2020)

    Article  Google Scholar 

  14. D. Luo, J. Lei, M. Zhang, Z. Wang, Design of a low noise bio-potential recorder with high tolerance to power-Line interference under 0.8 V Power supply. IEEE Trans. Biomed. Circuits Syst. 14(6), 1421–1430 (2020)

    Article  Google Scholar 

  15. D. Luo, M. Zhang, Z. Wang, A low-noise chopper amplifier designed for multi-channel neural signal acquisition. IEEE J. Solid-State Circuits 54(8), 2255–2265 (2019)

    Article  Google Scholar 

  16. D. Luo, M. Zhang, and Z. Wang, Design of a low noise neural recording amplifier for closed-loop neuromodulation applications. In: IEEE Internlational Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2018)

  17. C. Menolfi, Q. Huang, A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE J. Solid-State Circuits 32(7), 968–976 (1997)

    Article  Google Scholar 

  18. R. Muller et al., A minimally invasive 64-channel wireless μECoG implant. IEEE J. Solid-State Circuits 50(1), 344–359 (2015)

    Article  Google Scholar 

  19. R. Nagulapalli, K. Hayatleh, S. Barker, P. Georgiou, F. Lidgey, A high value, linear and tunable CMOS pseudo-resistor for biomedical applications. J. Circuits Syst. Comput. 28(6), 1950096 (2019)

    Article  Google Scholar 

  20. M. Nasserian, A. Peiravi, F. Moradi, A fully-integrated 16-channel EEG readout front-end for neural recording applications. AEU-Int. J. Electron. Commun. 94, 109–121 (2018)

    Article  Google Scholar 

  21. N. Perez-Prieto, J. L. Valtierra, M. Delgado-Restituto, and A. Rodriguez-Vazquez, A sub-μV rms chopper front-end for ECoG recording. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2019)

  22. R. Puddu et al., A precision pseudo resistor bias scheme for the design of very large time constant filters. IEEE Trans. Circuits Syst. II Express Briefs 64(7), 762–766 (2017)

    Article  Google Scholar 

  23. C. Qian, J. Parramon, E. Sanchez-Sinencio, A micropower low-noise neural recording front-end circuit for epileptic seizure detection. IEEE J. Solid-State Circuits 46(6), 1392–1405 (2011)

    Article  Google Scholar 

  24. B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd edn. (McGraw-Hill, New York, 2017)

    Google Scholar 

  25. S.U. Rehman, A.M. Kamboh, A CMOS micro-power and area efficient neural recording and stimulation front-end for biomedical applications. Circuits Systems Signal Process. 34(6), 1725–1746 (2015)

    Article  Google Scholar 

  26. H. Rezaee-Dehsorkh et al., Analysis and design of tunable amplifiers for implantable neural recording applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 1(4), 546–556 (2011)

    Article  Google Scholar 

  27. A. Samiei, H. Hashemi, A chopper-stabilized, current feedback, neural recording amplifier. IEEE Solid-State Circuits Letters 2(3), 17–20 (2019)

    Article  Google Scholar 

  28. A. Tajalli, Y. Leblebici, E.J. Brauer, Implementing ultra-high-value floating tunable CMOS resistors. Electron. Lett. 44(5), 349–350 (2008)

    Article  Google Scholar 

  29. N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid-State Circuits 45(4), 804–816 (2010)

    Article  Google Scholar 

  30. C.-Y. Wu, C.-H. Cheng, Z.-X. Chen, A 16-channel CMOS chopper-stabilized analog front-end ECoG acquisition circuit for a closed-loop epileptic seizure control system. IEEE Trans. Biomed. Circuits Syst. 12(3), 543–553 (2018)

    Article  Google Scholar 

  31. J. Wu, M.-K. Law, P.-I. Mak, R.P. Martins, A 2 µW 45 nV/√ Hz readout front end with multiple-chopping active-high-pass ripple reduction loop and pseudofeedback DC servo loop. IEEE Trans. Circuits Syst. II Express Briefs 63(4), 351–355 (2015)

    Article  Google Scholar 

  32. J. Xu, Q. Fan, J.H. Huijsing, C. Van Hoof, R.F. Yazicioglu, K.A. Makinwa, Measurement and analysis of current noise in chopper amplifiers. IEEE J. Solid-State Circuits 48(7), 1575–1584 (2013)

    Article  Google Scholar 

  33. J. Xu, S. Mitra, C. Van Hoof, R.F. Yazicioglu, K.A. Makinwa, Active electrodes for wearable EEG acquisition: Review and electronics design methodology. IEEE Rev. Biomed. Eng. 10, 187–198 (2017)

    Article  Google Scholar 

  34. M. Yavari, T. Moosazadeh, A single-stage operational amplifier with enhanced transconductance and slew rate for switched-capacitor circuits. Analog Integr. Circ. Sig. Process 79(3), 589–598 (2014)

    Article  Google Scholar 

  35. R.F. Yazicioglu, P. Merken, R. Puers, C. Van Hoof, A 200 μW eight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J. Solid-State Circuits 43(12), 3025–3038 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yavari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, F., Yavari, M. A Fully-Differential Chopper Capacitively-Coupled Amplifier with High Input Impedance for Closed-Loop Neural Recording. Circuits Syst Signal Process 41, 3679–3705 (2022). https://doi.org/10.1007/s00034-022-01970-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-01970-3

Keywords

Navigation