Skip to main content
Log in

Designing of an 8 × 8 Multiplier with New Inexact 4:2 Compressors for Image Processing Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Inexact computing brings benefits to error-tolerant applications, including multimedia and signal processing. Although inexact computing reduces precision, it provides meaningful and faster results yet, with lower energy consumption and lower system architecture complexity. We introduce two 4:2 inexact compressors into the unsigned 8 × 8 multiplier circuit by truncating and combining the presented compressors, which in terms of dynamic power shows 25 and 57.14%, respectively, improvement in comparison with the exact multiplier and the best value of similar models. The proposed multiplier with the truncating and combining method and the second proposed compressor shows 7.78 and 67.97% improvement in the MED and PDUEP, respectively, improvement in comparison with the best value of similar models. In design of the transistor level, the proposed models improve the power up to 0.007 μW. In the image processing application, the proposed multipliers with the truncating and combining method, improve the PSNR up to13.23 and 16.17%, respectively, and improve the SSIM up to 0.90 and 0.94%.The routing and mapping of the proposed circuits are conducted using the hybrid method to improve the evaluation criteria for image processing applications. The validity of the performance of the proposed multipliers are examined with simulations of FPGA circuits (Virtex-6 family) and ASIC circuits (RF_CMOS 0.18 µm), and simulation of applications in image processing is carried out in MATLAB software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. PDP.

  2. Look up table.

  3. Mean error distance.

  4. PDP by LUT and slice product.

  5. PDUP-MED product.

  6. DSP.

References

  1. M. Ahmadinejad, M.H. Moaiyeri, F. Sabetzadeh, Energy and area efficient inexact compressors for inexact multiplication at nanoscale. AEU-Int. J. Electron. Commun. 110, 152859 (2019). https://doi.org/10.1016/J.AEUE.2019.152859

    Article  Google Scholar 

  2. O. Akbari et al., Dual-quality 4:2 compressors for utilizing in dynamic accuracy configurable multipliers. IEEE Trans. Very Large Scale Integr 25(4), 1352–1361 (2017). https://doi.org/10.1109/TVLSI.2016.2643003

    Article  Google Scholar 

  3. R.G. Deshpande, L.L. Ragha, S.K. Sharma, Video quality assessment through PSNR estimation for different compression standards. Indones. J. Electr. Eng. Comput. Sci. 11(3), 918–924 (2018). https://doi.org/10.11591/ijeecs.v11.i3.pp918-924

    Article  Google Scholar 

  4. P.J. Edavoor, S. Raveendran, A.D. Rahulkar, Novel 4: 2 inexact compressor designs for multimedia and neural network applications. J. Circuits, Syst. Comput. 30(08), 2150138 (2021). https://doi.org/10.1109/ACCESS.2020.2978773

    Article  Google Scholar 

  5. P.J. Edavoor, S. Raveendran, A.D. Rahulkar, Inexact multiplier design using novel dual-stage 4: 2 compressors. IEEE Access 8, 48337–48351 (2020). https://doi.org/10.1109/ACCESS.2020.2978773

    Article  Google Scholar 

  6. Y. Devi Ykuntam, K. Pavani, K. Saladi, Design and analysis of High speed wallace tree multiplier using parallel prefix adders for VLSI circuit designs, in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (IEEE). https://doi.org/10.1109/ICCCNT49239.2020.9225404

  7. D. Esposito et al., Inexact multipliers based on new inexact compressors. IEEE Trans. Circuits Syst. I Regul. Pap. 65(12), 4169–4182 (2018)

    Article  Google Scholar 

  8. B. Garg, S.K. Patel, S. Dutt, LoBA: a leading one bit based inexact multiplier for efficient image processing. J. Electron. Test. 36(3), 429–437 (2020). https://doi.org/10.1007/s10836-020-05883-4

    Article  Google Scholar 

  9. R. C. Gonzales, R.E. Woods, Digital Image Processing (Pearson Education Inc, 2010)

  10. T. S. Krishna, et al., 15–4 Inexact Compressor based multiplier for image processing, in 2nd International Conference on Trends in Electronics and Informatics (ICOEI) (IEEE, 2018). https://doi.org/10.1109/ICOEI.2018.8553734

  11. U. A. Kumar, S. V. Bharadwaj, A. B. Pattaje, S. Nambi, S. E. Ahmed, CAAM: compressor based adaptive inexact multiplier for neural network applications. IEEE Embed. Syst. Lett. (2022). https://doi.org/10.1109/LES.2022.3199273

  12. U.A. Kumar et al., A high-speed and power-efficient inexact adder for image processing applications. J. Circuits, Syst. Comput. 31(03), 2250049 (2022)

    Article  Google Scholar 

  13. U.A. Kumar, S.K. Chatterjee, S.E. Ahmed, Low-power compressor-based inexact multipliers with error correcting module. IEEE Embed. Syst. Lett. 14(2), 59–62 (2022). https://doi.org/10.1109/LES.2021.3113005

    Article  Google Scholar 

  14. V. Kumar et al., Power-delay-error-efficient inexact adder for error-resilient applications. J. Circuits, Syst. Comput. 28(10), 1950171 (2019). https://doi.org/10.1142/S0218126619501718

    Article  Google Scholar 

  15. J. Lee, H. Kim, Highly accurate inexact multiplier using heterogeneous inexact 4–2 compressors for error-resilient applications. IEMEK J. Embed. Syst. Appl. 16(5), 233–240 (2021)

    MathSciNet  Google Scholar 

  16. C. H. Lin, C. Lin, High accuracy inexact multiplier with error correction, in 2013 IEEE 31st International Conference on Computer Design (ICCD) (IEEE, 2013). https://doi.org/10.1109/ICCD.2013.6657022

  17. R. Nirlakalla, R.T. Subba, T. Jayachandra-Prasad, Performance evaluation of high speed compressors for high speed multipliers. Serb. J. Electr. Eng. 8(3), 293–306 (2011)

    Article  Google Scholar 

  18. R. Pinto, K. Shama, Low-power modified shift-add multiplier design using parallel prefix adder. J. Circuits, Syst. Comput. 28(02), 1950019 (2019). https://doi.org/10.1142/S0218126619500191

    Article  Google Scholar 

  19. A. Pishvaie, G. Jaberipur, A. Jahanian, Redesigned CMOS (4; 2) compressor for fast binary multipliers. Can. J. Electr. Comput. Eng. 36(3), 111–115 (2013). https://doi.org/10.1109/CJECE.2013.6704692

    Article  Google Scholar 

  20. D. Rostami, M. Eshghi, Y.S. Mehrabani, Low-power and high-speed inexact 4: 2 compressors for image multiplication applications in CNFETs. Int. J. Electron. 108(8), 1288–1308 (2021). https://doi.org/10.1080/00207217.2020.1858973

    Article  Google Scholar 

  21. F. Salmanpour, M.H. Moaiyeri, F. Sabetzadeh, Ultra-Compact inexact 4: 2 compressor and multiplier circuits for inexact computing in deep nanoscale. Circuits Syst. Signal Process. 40(9), 4633–4650 (2021). https://doi.org/10.1007/s00034-021-01688-8

    Article  Google Scholar 

  22. M.M.D. Savio, T. Deepa, Design of higher order multiplier with inexact compressor, in 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)

  23. G. Shobana, R. Chithiraimuthu, A. Adhithyavel, Performance analysis and implementation of inexact multipliers on spartan 6 FPGA. Int. J. Health Sci. 6(1), 10633–10652 (2022). https://doi.org/10.53730/ijhs.v6nS1.7546

    Article  Google Scholar 

  24. V. Solanki, A.D. Darji, H. Singapuri, Design of low-power wallace tree multiplier architecture using modular approach. Circuits Syst. Signal Process. 40(9), 4407–4427 (2021). https://doi.org/10.1007/S00034-021-01671-3

    Article  Google Scholar 

  25. A.G.M. Strollo et al., Comparison and extension of inexact 4–2 compressors for low-power inexact multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 67(9), 3021–3034 (2020). https://doi.org/10.1109/TCSI.2020.2988353

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Sulakshana, Design of approximate multiplier to reduce delay and area. Iconic Res. Eng. J. 5(9), 354–358 (2022)

    Google Scholar 

  27. K. Sundaram et al., Area–energy–error optimized faithful multiplier for digital signal processing. Circuits Syst. Signal Process. 40(12), 6224–6241 (2021). https://doi.org/10.1007/S00034-021-01765-Y

    Article  Google Scholar 

  28. N. Van Toan, J.-G. Lee, FPGA-based multi-level inexact multipliers for high-performance error-resilient applications. IEEE Access 8, 25481–25497 (2020). https://doi.org/10.1109/ACCESS.2020.2970968

    Article  Google Scholar 

  29. S. Venkatachalam, S.-B. Ko, Design of power and area efficient inexact multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(5), 1782–1786 (2017). https://doi.org/10.1109/TVLSI.2016.2643639

    Article  Google Scholar 

  30. Z. Yang, X. Li, J. Yang, Power efficient and high-accuracy inexact multiplier with error correction. J. Circuits, Syst. Comput. 29(15), 2050241 (2020). https://doi.org/10.1142/S0218126620502412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Majid Babaeinik or Vahid Ghods.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, M., Babaeinik, M., Ghods, V. et al. Designing of an 8 × 8 Multiplier with New Inexact 4:2 Compressors for Image Processing Applications. Circuits Syst Signal Process 42, 6749–6779 (2023). https://doi.org/10.1007/s00034-023-02418-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02418-y

Keywords

Navigation