Skip to main content

Advertisement

Log in

Synthesis and evaluation of a novel series of 6-bromo-1-cyclopentyl-1H-indazole-4-carboxylic acid-substituted amide derivatives as anticancer, antiangiogenic, and antioxidant agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of novel indazole derivatives has been synthesized and evaluated for anticancer, antiangiogenic, and antioxidant activities. The capability of the synthesized compounds 11a–x to hinder the viability of three human cancer cells lines, HEP3BPN 11 (liver), MDA 453 (breast), and HL 60 (leukemia), were assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Among the compounds 11a–x screened, 11c and 11d showed the higher inhibitory activity on the viability of HEP3BPN 11 (liver), when compared with the standard methotrexate. These compounds were further tested to evaluate their potential to inhibit the proangiogenic cytokines associated with tumor development. Compound 11c was found to be a potent antiangiogenic agent against TNFα, VEGF, and EGF, whereas 11d showed potent antiangiogenic activity against TNFα, VEGF, IGF1, TGFb, and leptin inhibition. All the compounds 11a–x were screened for their antioxidant activities using 2,2-diphenyl-1-picryl hydrazine (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging activity. Compounds 11n, 11p, 11q, and 11v have shown significant OH radical scavenging activities, also compounds 11c, 11h, and 11k were found to have a DPPH radical scavenging activity and compounds 11a and 11m exhibited better SOR scavenging activity when compared with the reference compound ascorbic acid. In silico molecular docking analysis revealed important structural insights behind observed anti TNFα effect by present indazole compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  • Aksoy L, Kolay E, Ağılönü Y, Aslan Z, Kargıoğlu M (2013) Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi J Biol Sci 20:235–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andronati S, Sava V, Makan S, Kolodeev G (1999) Synthesis of 3-aryl-1-[(4-phenyl-1-piperazinyl) butyl] indazole derivatives and their affinity to 5-HT1A serotonin and dopamine D1 receptors. Pharmazie 54:99–101

    CAS  PubMed  Google Scholar 

  • Baraldi PG, Balboni G, Pavani MG, Spalluto G, Tabrizi MA, Clercq ED, Balzarini J, Bando T, Sugiyama H, Romagnoli R (2001) Design, synthesis, DNA binding, and biological evaluation of water-soluble hybrid molecules containing two pyrazole analogues of the alkylating cyclopropylpyrroloindole (CPI) subunit of the antitumor agent CC-1065 and polypyrrole minor groove binders. J Med Chem 44:2536–2543

    CAS  PubMed  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy. Organ J 5:9–19

    CAS  Google Scholar 

  • Blevitt JM, Hack MD, Herman KL, Jackson PF, Krawczuk PJ, Lebsack AD, Liu AX, Mirzadegan T, Nelen MI, Patrick AN, Steinbacher S (2017) Structural basis of small-molecule aggregate induced inhibition of a protein–protein interaction. J Med Chem 60:3511–3517

    CAS  PubMed  Google Scholar 

  • Celine D, Neil J, Steven KD, Louis L, William MH, Kenneth N, Stuart R, Rouse MB (2011) PCT Int. Appl. WO2011140325

  • Chabner BA, Roberts TG,Jr (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72

    CAS  PubMed  Google Scholar 

  • Chapdelaine M, Herzog KJ (2005) PCT Int. Appl. WO2005100351

  • Corsi G, Palazzo G, Germani C, Scorza Barcellona P, Silvestrini B (1976) 1-Halobenzyl-1H-indazole-3-carboxylic acids. A new class of antispermatogenic agents. J Med Chem 19:778–783

    CAS  PubMed  Google Scholar 

  • De Angelis M, Stossi F, Carlson KA, Katzenellenbogen BS, Katzenellenbogen JA (2005) Indazole estrogens: highly selective ligands for the estrogen receptor β. J Med Chem 48:1132–1144

    PubMed  Google Scholar 

  • Deepu C, Raghavendra G, Rekha N, Mantelingu K, Rangappa K, Bhadregowda D (2015) Synthesis and biological evaluation of novel 1, 5-benzothiazepin-4 (5H)-ones as potent antiangiogenic and antioxidant agents. Curr Chem Lett 4:133–144

    Google Scholar 

  • Emsley J, Hall D (1976) The chemistry of phosphorus. Harper and Row, London

    Google Scholar 

  • Friedmann E, Hauben E, Maylandt K, Schleeger S, Vreugde S, Lichtenthaler SF, Kuhn PH, Stauffer D, Rovelli G, Martoglio B (2006) SPPL2a and SPPL2b promote intramembrane proteolysis of TNFα in activated dendritic cells to trigger IL-12 production. Nat Cell Biol 8:843–848

    CAS  PubMed  Google Scholar 

  • Gacche RN (2015) Compensatory angiogenesis and tumor refractoriness. Oncogenesis 4:e153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gacche RN, Assaraf YG (2018) Redundant angiogenic signaling and tumor drug resistance. Drug Resist Update 36:47–76

    Google Scholar 

  • Gacche RN, Meshram RJ (2013) Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. Prog Biophys Mol Biol 113:333–354

    CAS  PubMed  Google Scholar 

  • Gacche RN, Meshram RJ (2014) Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta 1846:161–179

    CAS  PubMed  Google Scholar 

  • He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, Cancilla MT, Wang J, Lugovskoy AA, Yoburn JC, Fung AD (2005) Small-molecule inhibition of TNF-α. Science 310:1022–1025

    CAS  PubMed  Google Scholar 

  • Hirschmann R, Smith AB, Taylor CM, Benkovic PA, Taylor SD, Yager KM, Sprengeler PA, Benkovic SJ (1994) Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids. Science 265:234–237

    CAS  PubMed  Google Scholar 

  • Honore S, Pasquier E, Braguer D (2005) Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci 62:3039–3056

    CAS  PubMed  Google Scholar 

  • Hossain MM, Shaha SK, Aziz F (2009) Antioxidant potential study of some synthesized N-heterocycles. Bangladesh Med Res Counc Bull 35:49–52

    PubMed  Google Scholar 

  • Huang J, Chen R (2000) An overview of recent advances on the synthesis and biological activity of α‐aminophosphonic acid derivatives. Heteroat Chem 11:480–492

    CAS  Google Scholar 

  • Ikeda Y, Takano N, Matsushita H, Shiraki Y, Koide T, Nagashima R, Fujimura Y, Shindo M, Suzuki S, Iwasaki T (1979) Pharmacological studies on a new thymoleptic antidepressant, 1-[3-(dimethylamino) propyl]-5-methyl-3-phenyl-1H-indazole (FS-32). Arzneimittelforschung 29:511–520

    CAS  PubMed  Google Scholar 

  • Jadhav SG, Meshram RJ, Gond DS, Gacche RN (2013) Inhibition of growth of Helicobacter pylori and its urease by coumarin derivatives: molecular docking analysis. J Pharm Res 7:705–711

    CAS  Google Scholar 

  • Jain RK (2008) Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8:309–316

    CAS  PubMed  Google Scholar 

  • Kamble RD, Meshram RJ, Hese SV, More RA, Kamble SS, Gacche RN, Dawane BS (2016) Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Comput Biol Chem 61:86–96

    CAS  PubMed  Google Scholar 

  • Kamble S, Utage B, Mogle P, Kamble R, Hese S, Dawane B, Gacche R (2016) Evaluation of curcumin capped copper nanoparticles as possible inhibitors of human breast cancer cells and angiogenesis: a comparative study with native curcumin. AAPS PharmSciTech 17:1030–1041

    CAS  PubMed  Google Scholar 

  • Kasiotis KM, Tzanetou EN, Haroutounian SA (2014) Pyrazoles as potential anti-angiogenesis agents: a contemporary overview. Front Chem 2:78

    PubMed  PubMed Central  Google Scholar 

  • Kong B, Seog JH, Graham LM, Lee SB (2011) Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine 6:929–941

    CAS  PubMed  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    CAS  PubMed  Google Scholar 

  • Liang CP, Chang CH, Liang CC, Hung KY, Hsieh CW (2014) In vitro antioxidant activities, free radical scavenging capacity, and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis (Pers.) Ames. Molecules 19:4681–4694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Chu S, Feher VA, Khalili M, Nie Z, Margosiak S, Nikulin V, Levin J, Sprankle KG, Tedder ME, Almassy R (2003) Structure-based design, synthesis, and antimicrobial activity of indazole-derived SAH/MTA nucleosidase inhibitors. J Med Chem 46:5663–5673

    CAS  PubMed  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4:118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Gong H, Zhu H, Ji Q, Su P, Liu P, Cao S, Yao J, Jiang L, Han M, Ma X (2014) A novel small-molecule TNFα inhibitor attenuates inflammation in a hepatitis mouse model. J Biol Chem 289:12457–12466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maier L, Spoerri H (1991) Organic phosphorus compounds 96.1 resolution of 1-amino-2-(4-fluorophenyl) ethylphosphonic acid as well as some di-and tripeptides. Phosphorus Sulfur Silicon Relat Elem 61:69–75

    CAS  Google Scholar 

  • Mirossay L, Varinská L, Mojžiš J (2017) Antiangiogenic effect of flavonoids and chalcones: an update. Int J Mol Sci 19:27

    PubMed Central  Google Scholar 

  • Miteva MA, Guyon F, Tufféry P (2010) Frog2: efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res 38:622–627

    Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    CAS  Google Scholar 

  • Natchev IA (1988) Synthesis, enzyme-substrate interaction and herbicidal activity of phosphoryl analogues of glycine. Liebigs Ann Chem 1988:861–867

    Google Scholar 

  • Pellegrini F, Budman DR (2005) Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest 23:264–273

    CAS  PubMed  Google Scholar 

  • Picciola G, Ravenna F, Carenini G, Gentili P, Riva M (1981) Heterocyclic compounds containing the residue of a 4-aminophenylalkanoic acid with potential anti-inflammatory activity. IV. Derivatives of 2-phenyl-2H-indazole. Farm Sci 36:1037–1056

    CAS  Google Scholar 

  • Rodgers JD, Johnson BL, Wang H, Greenberg RA, Erickson-Viitanen S, Klabe RM, Cordova BC, Rayner MM, Lam GN, Chang CH (1996) Potent cyclic urea HIV protease inhibitors with benzofused heterocycles as P2/P2′ groups. Bioorg Med Chem Lett 6:2919–2924

    CAS  Google Scholar 

  • Saczewski F, Hudson AL, Tyacke RJ, Nutt DJ, Man J, Tabin P, Saczewski J (2003) 2-(4, 5-Dihydro-1H-imidazol-2-yl) indazole (indazim) derivatives as selective I2 imidazoline receptor ligands. Eur J Pharm Sci 20:201–208

    CAS  PubMed  Google Scholar 

  • Traverse JF, Feigelson GB, Ruchelman AL, Liu J, Liu H, Ma C, Liu D, Zhang S, (2015) PCT Int. Appl. WO2014018866

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel 8:127–134

    CAS  Google Scholar 

  • Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H (2017) Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 267:100–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Oo Khor T, Shu L, Su ZY, Fuentes F, Lee JH, Tony Kong AN (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 12:1281–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ge J, Wang K, Qian J, Zou Y (2006) Evaluation of MTT assay for measurement of emodin-induced cytotoxicity. Assay Drug Dev Technol 4:203–207

    CAS  PubMed  Google Scholar 

  • Wang X, Xia Y, Liu L, Liu M, Gu N, Guang H, Zhang F (2010) Comparison of MTT assay, flow cytometry, and RT‐PCR in the evaluation of cytotoxicity of five prosthodontic materials. J Biomed Mater Res- Part B Appl Biomater 95:357–364

    PubMed  Google Scholar 

  • Wayne KK, James OE, Richard C, William DK (2012) PCT Int. Appl. WO2012118812

  • Workman P, Kaye SB (2002) Translating basic cancer research into new cancer therapeutics. Trends Mol Med 8:S1–S9

    PubMed  Google Scholar 

Download references

Acknowledgements

RNG thanks the financial assistance through DRDP, DST-PURSE schemes of SPPU Pune. SSK is sincerely thankful to UGC, New Delhi, India, for providing Maulana Azad National Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinod T. Kamble or Rajesh N. Gacche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawant, A.S., Kamble, S.S., Pisal, P.M. et al. Synthesis and evaluation of a novel series of 6-bromo-1-cyclopentyl-1H-indazole-4-carboxylic acid-substituted amide derivatives as anticancer, antiangiogenic, and antioxidant agents. Med Chem Res 29, 17–32 (2020). https://doi.org/10.1007/s00044-019-02454-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02454-x

Keywords

Navigation