Skip to main content
Log in

Koronarphysiologie im Herzkatheterlabor

Coronary physiology in the catheter laboratory

  • Übersichten
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die Regulation des koronaren Flusses erfolgt im Wesentlichen in den Widerstandsgefäßen der Mikrozirkulation, sodass sich die funktionelle Relevanz einer Koronarstenose aus dem Wechselspiel zwischen Stenose und nachgeschalteter Mikrozirkulation ergibt. Diese Zusammenhänge werden durch koronarphysiologische Messungen, wie die Bestimmung der iwFR („instantaneous wave-free ratio“) oder der fraktionellen Flussreserve (FFR), sehr präzise erfasst. Im Gegensatz dazu führen rein visuelle Beurteilungen der koronaren Anatomie oft zu Fehlinterpretationen und möglicherweise zu falschen Revaskularisationsentscheidungen. Entsprechend findet sich in den aktuellen Revaskularisierungsleitlinien der European Society of Cardiology (ESC) für die FFR und die iwFR eine Klasse-IA-Indikation bei intermediären Koronarstenosen mit unklarer hämodynamischer Relevanz. Dennoch wird die Methodik im klinischen Alltag oftmals nicht eingesetzt. Neben der rein hämodynamischen Beurteilung können neuartige Methoden wie Koregistrierung und koronares Mapping auch zur Planung einer perkutanen transluminalen Koronarangioplastie (PTCA), insbesondere bei Gefäßen mit diffusen Veränderungen oder seriellen Stenosen, angewandt werden. Darüber hinaus stratifiziert die invasive Flussmessung auch zwischen konservativ und interventionell zu behandelnden Patienten im akuten Koronarsyndrom, bei denen im Vergleich zur stabilen koronaren Herzkrankheit weitere Faktoren der Flusslimitation wie Spasmus, Thrombus und akute Mikrozirkulationsstörungen hinzukommen.

Abstract

The regulation of coronary flow is mainly located in the resistance vessels of the microcirculation, so that the functional relevance of a coronary stenosis arises from the interaction between the epicardial stenosis and the downstream microcirculation. These complex interactions are precisely detectable by physiological measurements, such as the instantaneous wave-free ratio (iwFR) or the fractional flow reserve (FFR). In contrast, the purely visual assessment of the coronary anatomy could lead to misinterpretation and possibly to incorrect revascularization decisions. Consequently, in the current guidelines on myocardial revascularization of the European Society of Cardiology (ESC) the measurement of iwFR and FFR has a class IA indication in intermediate stenoses with unclear hemodynamic relevance. Despite this clear recommendation, physiological measurements are not yet regularly used in the clinical routine. Besides the purely hemodynamic assessment, novel methods such as co-registration and coronary mapping can be used for virtual planning of percutaneous coronary interventions, especially in vessels with diffuse lesions and serial stenoses. Furthermore, invasive flow measurements are also helpful for risk stratification between conservative and interventional treatment of patients with acute coronary syndrome, where additional factors of flow limitation, such as coronary spasm, thrombus and acute disturbance of the microcirculation play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. De Bruyne B, Pijls NH, Paulus WJ, Vantrimpont PJ, Sys SU, Heyndrickx GR (1993) Transstenotic coronary pressure gradient measurement in humans: in vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire. J Am Coll Cardiol 22(1):119–126. https://doi.org/10.1016/0735-1097(93)90825-l

    Article  CAS  PubMed  Google Scholar 

  2. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, Koolen JJ (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708. https://doi.org/10.1056/NEJM199606273342604

    Article  CAS  PubMed  Google Scholar 

  3. Johnson NP, Jeremias A, Zimmermann FM et al (2016) Continuum of vasodilator stress from rest to contrast medium to adenosine hyperemia for fractional flow reserve assessment. JACC Cardiovasc Interv 9(8):757–767. https://doi.org/10.1016/j.jcin.2015.12.273

    Article  PubMed  Google Scholar 

  4. Sen S, Escaned J, Malik IS et al (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 59(15):1392–1402. https://doi.org/10.1016/j.jacc.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  5. Svanerud J, Ahn JM, Jeremias A et al (2018) Validation of a novel non-hyperaemic index of coronary artery stenosis severity: the resting full-cycle ratio (VALIDATE RFR) study. EuroIntervention 14(7):806–814. https://doi.org/10.4244/EIJ-D-18-00342

    Article  PubMed  Google Scholar 

  6. Davies JE, Sen S, Dehbi HM et al (2017) Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med 376(19):1824–1834. https://doi.org/10.1056/NEJMoa1700445

    Article  PubMed  Google Scholar 

  7. Gotberg M, Christiansen EH, Gudmundsdottir IJ et al (2017) Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 376(19):1813–1823. https://doi.org/10.1056/NEJMoa1616540

    Article  PubMed  Google Scholar 

  8. Baumann S, Schaefer AC, Hohneck A, Mueller K, Becher T, Behnes M, Renker M, Borggrefe M, Akin I, Lossnitzer D (2018) Instantaneous wave-free ratio (iFR®)  in patients with coronary artery disease. Herz 43(7):621–627. https://doi.org/10.1007/s00059-017-4608-8

    Article  CAS  PubMed  Google Scholar 

  9. Johnson NP, Li W, Chen X, Hennigan B, Watkins S, Berry C, Fearon WF, Oldroyd KG (2019) Diastolic pressure ratio: new approach and validation vs. the instantaneous wave-free ratio. Eur Heart J 40(31):2585–2594. https://doi.org/10.1093/eurheartj/ehz230

    Article  PubMed  PubMed Central  Google Scholar 

  10. Westra J, Andersen BK, Campo G et al (2018) Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the FAVOR II Europe-Japan study. J Am Heart Assoc 7(14):e9603. https://doi.org/10.1161/JAHA.118.009603

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pellicano M, Lavi I, De Bruyne B et al (2017) Validation study of image-based fractional flow reserve during coronary angiography. Circ Cardiovasc Interv 10(9):e5259. https://doi.org/10.1161/CIRCINTERVENTIONS.116.005259

    Article  PubMed  Google Scholar 

  12. Cook CM, Petraco R, Shun-Shin MJ, Ahmad Y, Nijjer S, Al-Lamee R, Kikuta Y, Shiono Y, Mayet J, Francis DP, Sen S, Davies JE (2017) Diagnostic accuracy of computed tomography-derived fractional flow reserve : a systematic review. JAMA Cardiol 2(7):803–810. https://doi.org/10.1001/jamacardio.2017.1314

    Article  PubMed  Google Scholar 

  13. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308(12):1237–1245. https://doi.org/10.1001/2012.jama.11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Norgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63(12):1145–1155. https://doi.org/10.1016/j.jacc.2013.11.043

    Article  PubMed  Google Scholar 

  15. Baumann S, Renker M, Akin I, Borggrefe M, Schoepf UJ (2017) FFR-derived from coronary CT angiography using workstation-based approaches. JACC Cardiovasc Imaging 10(4):497–498. https://doi.org/10.1016/j.jcmg.2017.01.012

    Article  PubMed  Google Scholar 

  16. Douglas PS, De Bruyne B, Pontone G et al (2016) 1‑year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. J Am Coll Cardiol 68(5):435–445. https://doi.org/10.1016/j.jacc.2016.05.057

    Article  PubMed  Google Scholar 

  17. Renker M, Schoepf UJ, Becher T, Krampulz N, Kim W, Rolf A, Mollmann H, Hamm CW, Henzler T, Borggrefe M, Akin I, Baumann S (2017) Computed tomography in patients with chronic stable angina : fractional flow reserve measurement. Herz 42(1):51–57. https://doi.org/10.1007/s00059-016-4433-5

    Article  CAS  PubMed  Google Scholar 

  18. Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, Bar F, Hoorntje J, Koolen J, Wijns W, de Bruyne B (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5‑year follow-up of the DEFER study. J Am Coll Cardiol 49(21):2105–2111. https://doi.org/10.1016/j.jacc.2007.01.087

    Article  PubMed  Google Scholar 

  19. Xaplanteris P, Fournier S, Pijls NHJ et al (2018) Five-year outcomes with PCI guided by fractional flow reserve. N Engl J Med 379(3):250–259. https://doi.org/10.1056/NEJMoa1803538

    Article  PubMed  Google Scholar 

  20. Lonborg J, Engstrom T, Kelbaek H et al (2017) Fractional flow reserve-guided complete revascularization improves the prognosis in patients with ST-segment-elevation myocardial infarction and severe nonculprit disease: a DANAMI 3‑PRIMULTI substudy (primary PCI in patients with ST-elevation myocardial infarction and multivessel disease: treatment of culprit lesion only or complete revascularization). Circ Cardiovasc Interv 10(4):e4460. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004460

    Article  PubMed  Google Scholar 

  21. Smits PC, Abdel-Wahab M, Neumann FJ, Boxma-de Klerk BM, Lunde K, Schotborgh CE, Piroth Z, Horak D, Wlodarczak A, Ong PJ, Hambrecht R, Angeras O, Richardt G, Omerovic E, Compare-Acute Investigators (2017) Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N Engl J Med 376(13):1234–1244. https://doi.org/10.1056/NEJMoa1701067

    Article  PubMed  Google Scholar 

  22. Neumann FJ, Sousa-Uva M, Ahlsson A et al (2019) 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 40(2):87–165. https://doi.org/10.1093/eurheartj/ehy394

    Article  PubMed  Google Scholar 

  23. Knuuti J, Wijns W, Saraste A et al (2019) 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz425

    Article  PubMed  Google Scholar 

  24. Nijjer SS, de Waard GA, Sen S, van de Hoef TP, Petraco R, Echavarria-Pinto M, van Lavieren MA, Meuwissen M, Danad I, Knaapen P, Escaned J, Piek JJ, Davies JE, van Royen N (2016) Coronary pressure and flow relationships in humans: phasic analysis of normal and pathological vessels and the implications for stenosis assessment: a report from the Iberian-Dutch-English (IDEAL) collaborators. Eur Heart J 37(26):2069–2080. https://doi.org/10.1093/eurheartj/ehv626

    Article  PubMed  Google Scholar 

  25. Cook CM, Jeremias A, Petraco R et al (2017) Fractional flow reserve/instantaneous wave-free ratio discordance in angiographically intermediate coronary stenoses: an analysis using doppler-derived coronary flow measurements. JACC Cardiovasc Interv 10(24):2514–2524. https://doi.org/10.1016/j.jcin.2017.09.021

    Article  PubMed  PubMed Central  Google Scholar 

  26. De Bruyne B, Pijls NH, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL (2000) Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation 101(15):1840–1847. https://doi.org/10.1161/01.cir.101.15.1840

    Article  CAS  PubMed  Google Scholar 

  27. Nijjer SS, Sen S, Petraco R, Mayet J, Francis DP, Davies JE (2015) The instantaneous wave-free ratio (iFR) pullback: a novel innovation using baseline physiology to optimise coronary angioplasty in tandem lesions. Cardiovasc Revasc Med 16(3):167–171. https://doi.org/10.1016/j.carrev.2015.01.006

    Article  PubMed  Google Scholar 

  28. Ju S, Gu LX (2019) Hemodynamic interference of serial stenoses and its impact on FFR and iFR measurements. Appl Sci 9:279. https://doi.org/10.3390/app9020279

    Article  CAS  Google Scholar 

  29. Nijjer SS, Sen S, Petraco R et al (2014) Pre-angioplasty instantaneous wave-free ratio pullback provides virtual intervention and predicts hemodynamic outcome for serial lesions and diffuse coronary artery disease. JACC Cardiovasc Interv 7(12):1386–1396. https://doi.org/10.1016/j.jcin.2014.06.015

    Article  PubMed  Google Scholar 

  30. Lehmann R (2019) iFR-Messung: Hämodynamische Relevanz von Koronarläsionen. Dtsch Arztebl. https://doi.org/10.3238/PersKardio..2019.04.12.06

    Article  Google Scholar 

  31. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, FAME Study Investigators (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224. https://doi.org/10.1056/NEJMoa0807611

    Article  CAS  PubMed  Google Scholar 

  32. Escaned J, Ryan N, Mejia-Renteria H et al (2018) Safety of the deferral of coronary revascularization on the basis of instantaneous wave-free ratio and fractional flow reserve measurements in stable coronary artery disease and acute coronary syndromes. JACC Cardiovasc Interv 11(15):1437–1449. https://doi.org/10.1016/j.jcin.2018.05.029

    Article  PubMed  Google Scholar 

  33. Ntalianis A, Sels JW, Davidavicius G, Tanaka N, Muller O, Trana C, Barbato E, Hamilos M, Mangiacapra F, Heyndrickx GR, Wijns W, Pijls NH, De Bruyne B (2010) Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Interv 3(12):1274–1281. https://doi.org/10.1016/j.jcin.2010.08.025

    Article  PubMed  Google Scholar 

Download references

Danksagung

Wir danken der Firma Volcano Corporation, Koninklijke Philips N.V. (Amsterdam, Niederlande) und dem Springer Verlag (Heidelberg, Deutschland) für das Überlassen der Bildrechte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Baumann.

Ethics declarations

Interessenkonflikt

S. Baumann erhält Studienunterstützung von den Firmen Abbott Vascular (Abbott Park, IL, USA) und Siemens Healthineers (Forcheim, Germany); W. Bojara, H. Post, T. Rudolph, T. Schäufele, P. Ong, R. Lehmann und C. von zur Mühlen erhalten Vortragshonorare der Firma Volcano Corporation, Koninklijke Philips N.V. (Amsterdam, Niederlande).

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Appendix

Appendix

Tab. 1 Im Beitrag zitierte Studien

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumann, S., Bojara, W., Post, H. et al. Koronarphysiologie im Herzkatheterlabor. Herz 46 (Suppl 1), 15–23 (2021). https://doi.org/10.1007/s00059-019-04878-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-019-04878-y

Schlüsselwörter

Keywords

Navigation