Skip to main content

Advertisement

Log in

Famotidine as a radioprotector for rectal mucosa in prostate cancer patients treated with radiotherapy

Phase I/II randomized placebo-controlled trial

Famotidin als Schutz der Enddarmschleimhaut vor Strahlenbelastung während der Strahlentherapie von Prostatakarzinompatienten

Randomisierte plazebokontrollierte Phase-I/II-Studie

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Acute bowel toxicity significantly affects the quality of life of patients treated with pelvic radiotherapy. This study was performed to assess whether pretreatment with famotidine can reduce acute radiation toxicities in patients undergoing radiotherapy for prostate cancer.

Patients and methods

Between April 2012 and February 2013, 36 patients undergoing radiotherapy for prostate cancer were enrolled to receive either placebo or famotidine. The patients received external-beam radiotherapy up to 70 Gy at daily fractions of 1.8–2 Gy (5 days/week). Oral famotidine 40 mg (80 mg/day) or placebo was administered twice daily (4 and 3 h prior to each radiotherapy fraction). Bowel and bladder acute toxicities were evaluated weekly during radiotherapy and once thereafter according to RTOG grading criteria.

Results

Famotidine was well tolerated. No grade III or higher acute toxicities were noted in the two groups. Grade II rectal toxicity developed significantly more often in patients receiving placebo than in patients receiving famotidine (10/18 vs. 2/16, p = 0.009). Moreover, no rectal bleeding occurred in the famotidine group, while 5 patients in the placebo group experienced rectal bleeding during treatment (p = 0.046). The duration of rectal toxicity in the radiotherapy course was also reduced in the famotidine group (15.7 vs. 25.2 days, p = 0.027). No significant difference between the two groups was observed in terms of urinary toxicity.

Conclusion

We demonstrated for the first time that famotidine significantly reduces radiation-induced injury on rectal mucosa representing a suitable radioprotector for patients treated with radiotherapy for prostate cancer.

Zusammenfassung

Hintergrund und Ziel

Die akute Darmtoxizität in der Strahlentherapie beeinflusst maßgeblich die Lebensqualität der Patienten. Die Studie dient zur Klärung des Famotidineinsatzes in der Vorbehandlung von Prostatakarzinompatienten zur Reduktion der Strahlenbelastung während der Strahlentherapie.

Patienten und Methoden

Von April 2012 bis Februar 2013 wurden 36 Prostatakarzinompatienten in eine Studiengruppe mit Famotidingabe bzw. in eine Vergleichsgruppe rekrutiert. Die perkutanen Strahlendosis von bis zu 70 Gy wurde auf täglich 1,8–2 Gy (5 Tage/Woche) fraktioniert. Famotidin (40 mg/Dosis) oder ein Placebomedikament wurde täglich im Abstand von 4 bzw. 3 h zu jeder Strahlungseinheit verabreicht. Das entspricht 2 täglichen Dosen von je 40 mg (Gesamtdosis: 80 mg/Tag) bzw. 2 Placebogaben. Die Darm- und Blasentoxizitätswerte wurden wöchentlich während und im Anschluss an die Bestrahlung anhand der Radiation-therapy-oncology-group(RTOG)-Kriterien ausgewertet.

Ergebnisse

Famotidin war gut verträglich. In beiden Gruppen wurde kein Toxizitätswert unter 3 registriert. In der Stufe II der Enddarmtoxizität wurden eindeutig höhere Werte in der Plazebogruppe im Vergleich zur Famotidingruppe (10/18 vs. 2/16, p = 0,009) verzeichnet. Zudem traten in der Famotidin­gruppe keine Blutung im Enddarm auf, während solche Blutungen bei 5 Patienten aus der Plazebogruppe während der Behandlung beobachtet wurden (p = 0,046). Die Dauer der Enddarmtoxizität war im Strahlentherapiekurs in der Famotidingruppe ebenfalls reduziert (15,7 vs. 25,2 Tage, p = 0,027). Bezüglich der Harnblasentoxizitätswerte wurde kein signifikanter Unterschied zwischen den beiden Gruppen beobachtet.

Schlussfolgerung

Zum ersten Mal wurde eine signifikante Reduktion der strahleninduzierten Enddarmschleimhautbelastung durch Famotidin als geeigneter Schutz vor Bestrahlung bei Prostatakarzinompatienten gezeigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Koukourakis MI (2012) Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br J Radiol 85:313–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Howard JM, Chremos AN, Collen MJ et al (1985) Famotidine, a new, potent, long-acting histamine H2receptor antagonist: comparison with cimetidine and ranitidine in the treatment of Zollinger-Ellison syndrome. Gastroenterology 88:1026–1033

    CAS  PubMed  Google Scholar 

  3. Howden CW, Tytgat GN (1996) The tolerability and safety profile of famotidine. Clin Ther 18:36–54

    CAS  PubMed  Google Scholar 

  4. Berardi RR, Tankanow RM, Nostrant TT (1988) Comparison of famotidine with cimetidine and ranitidine. Clin Pharm 4:271–284

    Google Scholar 

  5. Mozdarani H, Gharbali A (1993) Radioprotective effects of cimetidine in mouse bone marrow cells exposed to gamma rays as assayed by the micronucleus test. Int J Radiat Biol 64:189–194

    Article  CAS  PubMed  Google Scholar 

  6. Mozdarani H, Vessal NJ (1993) Cimetidine can modify the effects of whole body gamma irradiation on lympho hematopoietic systems. Med J IR Iran 7:95–99

    Google Scholar 

  7. Mozdarani H, Khoshbin-Khoshnazar AR (1998) In vivo protection by cimetidine against fast neutron–induced micronuclei in mouse bone marrow cells. Cancer Lett 124:65–71

    Article  CAS  PubMed  Google Scholar 

  8. Ghorbani M, Mozdarani H (2003) In vitro radioprotective effects of histamine H2-receptor antagonists against gamma rays induced chromosomal aberrations in human lymphocytes. Iran J Radiat Res 1:99–104

    Google Scholar 

  9. Shahidi M, Mozdarani H (2003) Potent radioprotective effect of therapeutic doses of ranitidine and famotidine against gama-rays induced micronuclei in vivo. Iran J Radiat Res 1:29–35

    Google Scholar 

  10. Kabodanian Ardestani S, Mahmood Janlow M, Kariminia A, Tavakoli Z (2004) Effect of cimetidine and ranitidine on lipid profile and lipid peroxidation in gamma-irradiated mice. Acta Med Iran 42:198–204

    Google Scholar 

  11. Mozdarani H, Salimi M, Froughizadeh M (2008) Effect of cimetidine and famotidine on survival of lethally gamma irradiated mice. Iran J Radiat Res 5:187–194

    Google Scholar 

  12. Mozdarani H, Ghoraeian P (2008) Modulation of gamma-ray-induced apoptosis in human peripheral blood leukocytes by famotidine and vitamin C. Mutat Res 649:71–78

    Article  CAS  PubMed  Google Scholar 

  13. Mozdarani H, Nasirian B, Haeri SA (2007) In vivo gamma-rays induced initial DNA damage and the effect of famotidine in mouse leukocytes as assayed by the alkaline comet assay. J Radiat Res 48:129–134

    Article  CAS  PubMed  Google Scholar 

  14. Mahdavi M, Mozdarani H (2011) Protective effects of famotidine and vitamin C against radiation induced cellular damage in mouse spermatogenesis process. Iran J Radiat Res 8:223–230

    Google Scholar 

  15. Hill SJ (1990) Distribution, properties and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42:45–83

    CAS  PubMed  Google Scholar 

  16. Sander LE, Lorentz A, Sellge G et al (2006) Selective expression of histamine receptors H1R, H2R, and H4R, but not H3R, in the human intestinal tract. Gut 55:498–504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Valencia S, Hândez-Angeles A, Soria-Jasso LE, Arias-Montano JA (2001) Histamine H1-receptor activation inhibits the proliferation of human prostatic adenocarcinoma DU-145 cells. Prostate 48:179–187

    Article  CAS  PubMed  Google Scholar 

  18. Pollack A, Zagars GK, Starkschall G et al (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53:1097–1105

    Article  PubMed  Google Scholar 

  19. Fuccio L, Guido A, Andreyev HJN (2012) Management of intestinal complications in patients with pelvic radiation disease. Clin Gastroenterol Hepatol 10:1326–1334

    Article  PubMed  Google Scholar 

  20. Shadad AK, Sullivan FJ, Martin JD, Egan LJ (2013) Gastrointestinal radiation injury: prevention and treatment. World J Gastroenterol 19:199–208

    Article  PubMed Central  PubMed  Google Scholar 

  21. Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346

    Article  CAS  PubMed  Google Scholar 

  22. Dorr W (2009) Pathogenesis of normal-tissue side-effects. In: Joiner MC, van der Kogel A (eds) Basic clinical radiobiology, 4th edn. Hodder Arnold, London, pp 169–190

  23. Sharma B, Pandey D, Chauhan V et al (2005) Radiation proctitis. J Indian Acad Clin Med 6:146–151

    Google Scholar 

  24. Siddiqi MA, Bothe E (1987) Single and double strand break formation in DNA irradiated in aqueous solutions: dependence on dose and OH radical scavenger concentration. Radiat Res 112:449–463

    Article  CAS  PubMed  Google Scholar 

  25. Ching TL, Jong JD, Bast A (1994) Structural characteristics of histamine H2-receptor antagonists that scavenge hypochlorous acid. Eur J Pharm 268:89–93

    Article  CAS  Google Scholar 

  26. Lapenna D, De Gioia S, Mezzetti A et al (1994) H2-receptor antagonists are scavengers of oxygen radicals. Exp J Clin Invest 24:479–481

    Google Scholar 

  27. Kawai R, Imasaki H, Kawamura S (1983) Metabolic fate of famotidine (YM-11170), a new potent H2-receptor antagonist: absorption, distribution, metabolism and excretion in rats. Pharmacometrics 26:927–933

    CAS  Google Scholar 

  28. Unak P, Lambrecht FY, Biber FZ (2004) Labeling of famotidine with 99mTc and biodistribution studies on rats. J Radioanal Nucl Chem 261:587–591

    Article  CAS  Google Scholar 

  29. Smith JL (1985) Clinical pharmacology of famotidine. Digestion 32:15–23

    Article  PubMed  Google Scholar 

  30. Chremos AN (1987) Clinical pharmacology of famotidine: a summary. J Clin Gastroenterol 9:7–12

    Article  PubMed  Google Scholar 

  31. Razzaghdoust A, Mozdarani H, Mofid B et al (2014) Reduction in radiation-induced lymphocytopenia by famotidine in patients undergoing radiotherapy for prostate cancer. Prostate. 74:41–47

    Google Scholar 

  32. Koukourakis MI, Kyrias G, Kakolyris S et al (2000) Subcutaneous administration of amifostine during fractionated radiotherapy: a randomized phase II study. J Clin Oncol 18:2226–2233

    CAS  PubMed  Google Scholar 

  33. Kouvaris J, Kouloulias V, Malas E et al (2003) Amifostine as radioprotective agent for the rectal mucosa during irradiation of pelvic tumors: a phase II randomized study using various toxicity scales and rectosigmoidoscopy. Strahlenther Onkol 179:167–174

    Article  PubMed  Google Scholar 

  34. Dunst J, Semlin S, Pigorsch S et al (2000) Intermittent use of amifostine during postoperative radiochemotherapy and acute toxicity in rectal cancer patients. Strahlenther Onkol 176:416–421

    Article  CAS  PubMed  Google Scholar 

  35. Kouloulias VE, Kouvaris JR, Pissakas G et al (2004) A phase II randomized study of topical intrarectal administration of amifostine for the prevention of acute radiation-induced rectal toxicity. Strahlenther Onkol 180:557–562

    Article  PubMed  Google Scholar 

  36. Kouloulias VE, Kouvaris JR, Pissakas G et al (2005) Phase II multicenter randomized study of amifostine for prevention of acute radiation rectal toxicity: topical intrarectal versus subcutaneous application. Int J Radiat Oncol Biol Phys 62:486–493

    Article  CAS  PubMed  Google Scholar 

  37. Koukourakis MI, Kyrgias G, Panteliadou M et al (2013) Dose escalation of amifostine for radioprotection during pelvic accelerated radiotherapy. Am J Clin Oncol 36:338–343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Shahid Beheshti University of Medical Sciences, Tehran, Iran. We would like to thank Dr SMR Aghamiri and AH Heidari for their collaboration. We also thank the staff of the radiotherapy departments of Pars and Shohada-e-Tajrish Hospitals.

Compliance with ethical guidelines

Conflict of interest

A. Razzaghdoust, H. Mozdarani, and B. Mofid state that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mozdarani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razzaghdoust, A., Mozdarani, H. & Mofid, B. Famotidine as a radioprotector for rectal mucosa in prostate cancer patients treated with radiotherapy. Strahlenther Onkol 190, 739–744 (2014). https://doi.org/10.1007/s00066-014-0602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0602-8

Keywords

Schlüsselwörter

Navigation