Skip to main content
Log in

Lichtalterung (Photoaging) der Haut: Was gibt es Neues?

Sun-damaged skin (photoaging): what is new?

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Die Alterung der Haut resultiert aus dem Zusammenspiel genetischer und nichtgenetischer, sog. exposomaler Faktoren. Einer der wichtigsten exposomalen Faktoren ist die chronische, lebenslange Bestrahlung der Haut mit Sonnenlicht. Wichtig ist hierbei, dass die resultierende, sog. Lichtalterung der Haut nicht nur durch ultraviolette (UV) B- und A-Strahlung, sondern auch durch Wellenlängenbereiche jenseits des UV-Spektrums, nämlich durch das sichtbare, genauer das blaue Licht (400–440 nm), und durch die kurzwellige Infrarotstrahlung (IRA; 770–1200 nm) verursacht wird. In dieser Übersichtsarbeit fassen wir die hierfür relevante wissenschaftliche Evidenz zusammen und wie sich diese Erkenntnisse auf den täglichen Lichtschutz auswirken. Zudem verdeutlichen wir die klinischen Konsequenzen, die das Konzept des Hautalterungsexposoms für die dermatologische Praxis hat und die sich u. a. aus der Interaktion des Sonnenlichts mit anderen exposomalen Faktoren ergibt.

Abstract

Skin aging results from the interaction of genetic and nongenetic so-called exposomal, factors. Among the exposomal factors, chronic, life-long exposure to sunlight is of eminent importance for the development of skin aging characteristics. Importantly, photoaging of human skin is not only caused by ultraviolet (UV) B and A radiation, but is also the consequence of exposure to wavelengths beyond the UV spectrum. These include visible, i.e. blue light (400–440 nm) as well as the short part of infrared radiation, i.e. IRA (760–1200 nm). Here we summarize the scientific evidence supporting these conclusions and emphasize the resulting consequences for daily photoprotection of human skin. We also explain the clinical significance of the concept that is offered by the skin aging exposome, which e.g. takes into account the fact that sunlight interacts with other exposomal factors and that this interaction is important for photoaging of the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Avola R, Graziano ACE, Pannuzo G, Bonina F, Cardile V (2019) Hydroxytyrosol from olive fruits prevents blue-light-induced damage in human keratinocytes and fibroblasts. J Cell Physiol 234(6):9065–9076

    Article  CAS  PubMed  Google Scholar 

  2. Boukari F, Jourdan E, Fontas E, Montaudie H, Castela E, Lacour JP et al (2015) Prevention of melasma relapses with sunscreen combining protection against UV and short wavelengths of visible light: a prospective randomized comparative trial. J Am Acad Dermatol 72(1):189–190.e1

    Article  CAS  PubMed  Google Scholar 

  3. Calles C, Schneider M, Macaluso F, Benesova T, Krutmann J, Schroeder P (2010) Infrared A radiation influences the skin fibroblast transcriptome: mechanisms and consequences. J Invest Dermatol 130(6):1524–1536

    Article  CAS  PubMed  Google Scholar 

  4. Cho S, Lee MJ, Kim MS, Lee S, Kim YK, Lee DH et al (2008) Infrared plus visible light and heat from natural sunlight participate in the expression of MMPs and type I procollagen as well as infiltration of inflammatory cell in human skin in vivo. J Dermatol Sci 50(2):123–133

    Article  CAS  PubMed  Google Scholar 

  5. Dumbuya H, Grimes PE, Lynch S et al (2020) Impact of iron-oxide containing formulations against visible light-induced skin pigmentation in skin of color individuals. J Drugs Dermatol 19(7):712–717

    Article  PubMed  Google Scholar 

  6. Duteil L, Esdaile J, Maubert Y et al (2017) A method to assess the protective efficacy of sunscreens against visible light-induced pigmentation. Photodermatol Photoimmunol Photomed 33(5):260–266

    Article  CAS  PubMed  Google Scholar 

  7. Flament F, Bazin R, Qiu H, Ye C, Laquieze S, Rubert V et al (2015) Solar exposure(s) and facial clinical signs of aging in Chinese women: impacts upon age perception. Clin Cosmet Investig Dermatol 8:75–84

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grether-Beck S, Marini A, Jaenicke T, Krutmann J (2014) Photoprotection of human skin beyond ultraviolet radiation. Photodermatol Photoimmunol Photomed 30(2–3):167–174

    Article  PubMed  Google Scholar 

  9. Grether-Beck S, Marini A, Jaenicke T, Krutmann J (2015) Effective photoprotection of human skin against infrared A radiation by topically applied antioxidants: results from a vehicle controlled, double-blind, radomized study. Photochem Photobiol 91(1):248–250

    Article  CAS  PubMed  Google Scholar 

  10. Hüls A, Sugiri D, Fuks K, Krutmann J, Schikowski T (2019) Lentigine formation in Caucasian women—Interaction between particulate matter and solar UVR. J Invest Dermatol 139(4):974–976

    Article  PubMed  Google Scholar 

  11. Iannacone MR, Hughes MC, Green AC (2014) Effects of sunscreen on skin cancer and photoaging. Photodermatol Photoimmunol Photomed 30(2–3):55–61

    Article  PubMed  Google Scholar 

  12. Kligman LH (1996) The hairless mouse model for photoaging. Clin Dermatol 14(2):183–195

    Article  CAS  PubMed  Google Scholar 

  13. Kohli N, Chaowattanapanit S, Mohammad TF, Nicholon CL, Fatima S, Jacobsen G, Kollias N, Lim HW, Hamzawi IH (2018) Synergistic effect of longwavelength ultraviolet A1 and visble light on pigmentaion and erythema. Br J Dermatol 178(5):1173–1180

    Article  CAS  PubMed  Google Scholar 

  14. Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T (2017) The skin aging exposome. J Dermatol Sci 85(3):152–161

    Article  PubMed  Google Scholar 

  15. Krutmann J, Gilchrest BA (2006) Photoaging of skin. In: Gilchrest BA, Krutmann J (Hrsg) Skin aging. Springer, Heidelberg, New York, S 33–43

    Chapter  Google Scholar 

  16. Krutmann J, Sondenheimer K, Grether-Beck S, Haarmann-Stemmann T (2018) Combined, simultaneous exposure to radiation within and beyond the UV spectrum: a novel approach to better understand skin damage by natural sunlight. In: Krutmann J, Merk H (Hrsg) Environment and skin. Springer, Cham, S 11–26

    Chapter  Google Scholar 

  17. Lorrio S, Rodriguez-Luna A, Delgado-Wicke P et al (2020) Portective effect of the aquaeous extract of Deschampsia antarctica (edafence) on skin cells against blue light emitted from digital devices. Int J Mol Sci 21(3):988

    Article  CAS  PubMed Central  Google Scholar 

  18. Mann T, Eggers K, Rippke F, Tesch M, Buerger A, Darvin M et al (2020) High-energy visible light at ambient doses and intensities induces oxidative stress of skin—protective effects of the antioxidant and Nrf2 inducer licochalcone A in vitro and in vivo. Photodermatol Photoimmunol Photomed 36(2):135–144

    Article  CAS  PubMed  Google Scholar 

  19. Martini APM, Maia Campos PMBG (2018) Influence of visible light on cutaneous hyperchromias: clinical efficacy of broad-spectrum sunscrens. Photodermatol Photoimmunol Photomed 34(4):241–248

    Article  PubMed  Google Scholar 

  20. Narla S, Kohli I, Hamzavi IH, Lim HW (2020) Visble light in photodermatology. Photochem Photobiol Sci 19(1):99–104

    Article  CAS  PubMed  Google Scholar 

  21. Omata Y, Lewis JB, Rotenberg S et al (2006) Intra- and extracellular rective oxygen species generated by blue light. J Biomed Mater Res A 77(3):470–477

    Article  CAS  PubMed  Google Scholar 

  22. Passeron T, Picardo M (2018) Melasma, a photoaging disorder. Pigment Cell Melanoma Res 31(4):461–465

    Article  PubMed  Google Scholar 

  23. Passeron T (2019) The key question of irradiance when it comes to the effects of visible light. Letter to the editor. J Dermatol Sci 93(1):69–70

    Article  PubMed  Google Scholar 

  24. Regazzetti C, Sormani L, Debayle D et al (2018) Melanocytes sense blue light and regulate pigmentation through Opsin‑3. J Invest Dermatol 138(1):171–178

    Article  CAS  PubMed  Google Scholar 

  25. Rittie L, Fisher GJ (2015) Natural and sun-induced aging of human skin. Cold Spring Harb Perspect Med 5(1):a15370

    Article  PubMed  PubMed Central  Google Scholar 

  26. Scharffetter-Kochanek K, Brenneisen P, Wenk J, Herrmann G, Ma W, Kuhr L et al (2000) Photoaging of the skin from phenotype to mechanisms. Exp Gerontol 35(3):307–316

    Article  CAS  PubMed  Google Scholar 

  27. Schroeder P, Lademann J, Darvin ME, Stege H, Marks C, Bruhnke S et al (2008) Infrared radiation-induced matrix metalloproteinase in human skin: implications for protection. J Invest Dermatol 128(10):2491–2497

    Article  CAS  PubMed  Google Scholar 

  28. Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 14(8):1847–1858

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Krutmann.

Ethics declarations

Interessenkonflikt

J. Krutmann und M. Berneburg geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutmann, J., Berneburg, M. Lichtalterung (Photoaging) der Haut: Was gibt es Neues?. Hautarzt 72, 2–5 (2021). https://doi.org/10.1007/s00105-020-04747-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-020-04747-4

Schlüsselwörter

Keywords

Navigation