Skip to main content

Advertisement

Log in

Placental vitamin D receptor expression is decreased in human idiopathic fetal growth restriction

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Fetal growth restriction (FGR) affects up to 5 % of pregnancies worldwide, and trophoblast function plays a significant role on the outcome. An epidemiological study has linked vitamin D deficiency to adverse perinatal outcomes, which include decreased birth weight. The placenta as an important source of vitamin D regulates its metabolism through the vitamin D receptor (VDR), but the mechanism by which VDR regulates trophoblast function is poorly understood. Our study aimed at determining placental VDR expression in FGR and gestation-matched control (GMC) pregnancies and identifying the actions of VDR in trophoblast differentiation and apoptosis. Placentae were collected from a well-defined cohort of idiopathic FGR and GMC pregnancies. VDR mRNA and protein expressions were determined by PCR, immunohistochemistry and immunoblotting, while functional consequences of VDR inactivation in vitro were determined on BeWo cells by determining changes in differentiation, attachment and apoptosis. Significant decreases in VDR mRNA expression (p = 0.0005) and protein expression (p = 0.0003) were observed in the FGR samples, while VDR inactivation, which showed markers for differentiation, cell attachment and apoptosis, was significantly increased. Thus, decreased placental VDR may contribute to uncontrolled premature differentiation and apoptosis of trophoblasts that are characteristics of idiopathic FGR pregnancies.

Key message

  • Fetal growth restriction (FGR) affects up to 5 % of all pregnancies worldwide.

  • FGR is the second highest cause of perinatal mortality and morbidity.

  • The placenta plays a pivotal role in vitamin D metabolism during pregnancy.

  • Vitamin D deficiency is associated with adverse pregnancy outcomes.

  • Placental vitamin D receptor expression is decreased in FGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bikle DD (2011) Vitamin D regulation of immune function. Vitam Horm 86:1–21

    CAS  PubMed  Google Scholar 

  2. Lagishetty V, Liu NQ, Hewison M (2011) Vitamin D metabolism and innate immunity. Mol Cell Endocrinol 347:97–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wei SQ, Qi HP, Luo ZC, Fraser WD (2013) Maternal vitamin D status and adverse pregnancy outcomes: a systematic review and meta-analysis. J J Matern Fetal Neonatal Med Off J Eur Assoc Perinatal Med Fed Asia Ocean Perinatal Soc Int Soc Perinatal Obstet 26:889–899

    CAS  Google Scholar 

  4. Robinson CJ, Wagner CL, Hollis BW, Baatz JE, Johnson DD (2011) Maternal vitamin D and fetal growth in early-onset severe preeclampsia. Am J Obstet Gynecol 204(556):e551–554

    Google Scholar 

  5. Kumar R, Cohen WR, Silva P, Epstein FH (1979) Elevated 1,25-dihydroxyvitamin D plasma levels in normal human pregnancy and lactation. J Clin Invest 63:342–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Liu NQ, Hewison M (2012) Vitamin D, the placenta and pregnancy. Arch Biochem Biophys 523:37–47

    Article  CAS  PubMed  Google Scholar 

  7. Robinson CJ, Alanis MC, Wagner CL, Hollis BW, Johnson DD (2010) Plasma 25-hydroxyvitamin D levels in early-onset severe preeclampsia. Am J Obstet Gynecol 203(366):e361–366

    Google Scholar 

  8. Thorne-Lyman A, Fawzi WW (2012) Vitamin D during pregnancy and maternal, neonatal and infant health outcomes: a systematic review and meta-analysis. Paediatr Perinat Epidemiol 26(Suppl 1):75–90

    Article  PubMed  Google Scholar 

  9. De-Regil LM, Palacios C, Ansary A, Kulier R, Pena-Rosas JP (2012) Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev 2:CD008873

    PubMed Central  PubMed  Google Scholar 

  10. Goyal R, Zhang L, Blood AB, Baylink DJ, Longo LD, Oshiro B, Mata-Greenwood E (2014) Characterization of an animal model of pregnancy-induced vitamin D deficiency due to metabolic gene dysregulation. Am J Physiol Endocrinol Metab 306:E256–266

    Article  CAS  PubMed  Google Scholar 

  11. Awad AB, Alappat L, Valerio M (2012) Vitamin d and metabolic syndrome risk factors: evidence and mechanisms. Crit Rev Food Sci Nutr 52:103–112

    Article  CAS  PubMed  Google Scholar 

  12. Fleet JC, DeSmet M, Johnson R, Li Y (2012) Vitamin D and cancer: a review of molecular mechanisms. Biochem J 441:61–76

    Article  CAS  PubMed  Google Scholar 

  13. Motiwala SR, Wang TJ (2011) Vitamin D and cardiovascular disease. Curr Opin Nephrol Hypertens 20:345–353

    Article  CAS  PubMed  Google Scholar 

  14. Ponsonby AL, Lucas RM, Lewis S, Halliday J (2010) Vitamin D status during pregnancy and aspects of offspring health. Nutrients 2:389–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Pludowski P, Holick MF, Pilz S, Wagner CL, Hollis BW, Grant WB, Shoenfeld Y, Lerchbaum E, Llewellyn DJ, Kienreich K et al (2013) Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence. Autoimmun Rev 12:976–989

    Article  CAS  PubMed  Google Scholar 

  16. McIntire DD, Bloom SL, Casey BM, Leveno KJ (1999) Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med 340:1234–1238

    Article  CAS  PubMed  Google Scholar 

  17. Scifres CM, Nelson DM (2009) Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol 587:3453–3458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mongelli M, Gardosi J (2000) Fetal growth. Curr Opin Obstet Gynecol 12:111–115

    Article  CAS  PubMed  Google Scholar 

  19. Godfrey KM, Barker DJ (2001) Fetal programming and adult health. Public Health Nutr 4:611–624

    Article  CAS  PubMed  Google Scholar 

  20. Barker DJ, Eriksson JG, Forsen T, Osmond C (2002) Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 31:1235–1239

    Article  CAS  PubMed  Google Scholar 

  21. Steffensen FH, Sorensen HT, Gillman MW, Rothman KJ, Sabroe S, Fischer P, Olsen J (2000) Low birth weight and preterm delivery as risk factors for asthma and atopic dermatitis in young adult males. Epidemiology 11:185–188

    Article  CAS  PubMed  Google Scholar 

  22. Rosso IM, Cannon TD, Huttunen T, Huttunen MO, Lonnqvist J, Gasperoni TL (2000) Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort. Am J Psychiatry 157:801–807

    Article  CAS  PubMed  Google Scholar 

  23. Gale CR, Martyn CN (2004) Birth weight and later risk of depression in a national birth cohort. Br J Psychiatry 184:28–33

    Article  PubMed  Google Scholar 

  24. Frisk V, Amsel R, Whyte HE (2002) The importance of head growth patterns in predicting the cognitive abilities and literacy skills of small-for-gestational-age children. Dev Neuropsychol 22:565–593

    Article  PubMed  Google Scholar 

  25. Sankaran S, Kyle PM (2009) Aetiology and pathogenesis of IUGR. Best Pract Res Clin Obstet Gynaecol 23:765–777

    Article  PubMed  Google Scholar 

  26. Handwerger S (2010) New insights into the regulation of human cytotrophoblast cell differentiation. Mol Cell Endocrinol 323:94–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ma R, Gu Y, Zhao S, Sun J, Groome LJ, Wang Y (2012) Expressions of vitamin D metabolic components VDBP, CYP2R1, CYP27B1, CYP24A1, and VDR in placentas from normal and preeclamptic pregnancies. Am J Physiol Endocrinol Metab 303:E928–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Murthi P, Said JM, Doherty VL, Donath S, Nowell CJ, Brennecke SP, Kalionis B (2006) Homeobox gene DLX4 expression is increased in idiopathic human fetal growth restriction. Mol Hum Reprod 12:763–769

    Article  CAS  PubMed  Google Scholar 

  29. Murthi P, Doherty VL, Said JM, Donath S, Brennecke SP, Kalionis B (2006) Homeobox gene ESX1L expression is decreased in human pre-term idiopathic fetal growth restriction. Mol Hum Reprod 12:335–340

    Article  CAS  PubMed  Google Scholar 

  30. Murthi P, Doherty V, Said J, Donath S, Brennecke SP, Kalionis B (2006) Homeobox gene HLX1 expression is decreased in idiopathic human fetal growth restriction. Am J Pathol 168:511–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rajaraman G, Murthi P, Leo B, Brennecke SP, Kalionis B (2007) Homeobox gene HLX1 is a regulator of colony stimulating factor-1 dependent trophoblast cell proliferation. Placenta 28:991–998

    Article  CAS  PubMed  Google Scholar 

  32. Rajaraman G, Murthi P, Pathirage N, Brennecke SP, Kalionis B (2010) Downstream targets of homeobox gene HLX show altered expression in human idiopathic fetal growth restriction. Am J Pathol 176:278–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pathirage NA, Cocquebert M, Sadovsky Y, Abumaree M, Manuelpillai U, Borg A, Keogh RJ, Brennecke SP, Evain-Brion D, Fournier T et al (2013) Homeobox gene transforming growth factor beta-induced factor-1 (TGIF-1) is a regulator of villous trophoblast differentiation and its expression is increased in human idiopathic fetal growth restriction. Mol Hum Reprod 19:665–675

    Article  CAS  PubMed  Google Scholar 

  34. Guaran RL, Wein P, Sheedy M, Walstab J, Beischer NA (1994) Update of growth percentiles for infants born in an Australian population. Aust N Z J Obstet Gynaecol 34:39–50

    Article  CAS  PubMed  Google Scholar 

  35. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  36. Keogh RJ (2010) New technology for investigating trophoblast function. Placenta 31:347–350

    Article  CAS  PubMed  Google Scholar 

  37. Chen CP, Bajoria R, Aplin JD (2002) Decreased vascularization and cell proliferation in placentas of intrauterine growth-restricted fetuses with abnormal umbilical artery flow velocity waveforms. Am J Obstet Gynecol 187:764–769

    Article  PubMed  Google Scholar 

  38. Kingdom J, Huppertz B, Seaward G, Kaufmann P (2000) Development of the placental villous tree and its consequences for fetal growth. Eur J Obstet Gynecol Reprod Biol 92:35–43

    Article  CAS  PubMed  Google Scholar 

  39. Avila E, Diaz L, Halhali A, Larrea F (2004) Regulation of 25-hydroxyvitamin D3 1alpha-hydroxylase, 1,25-dihydroxyvitamin D3 24-hydroxylase and vitamin D receptor gene expression by 8-bromo cyclic AMP in cultured human syncytiotrophoblast cells. J Steroid Biochem Mol Biol 89–90:115–119

    Article  PubMed  Google Scholar 

  40. Barrera D, Avila E, Hernandez G, Mendez I, Gonzalez L, Halhali A, Larrea F, Morales A, Diaz L (2008) Calcitriol affects hCG gene transcription in cultured human syncytiotrophoblasts. Reprod Biol Endocrinol RB&E 6:3

    Article  Google Scholar 

  41. Stephanou A, Ross R, Handwerger S (1994) Regulation of human placental lactogen expression by 1,25-dihydroxyvitamin D3. Endocrinology 135:2651–2656

    CAS  PubMed  Google Scholar 

  42. Tuan RS, Moore CJ, Brittingham JW, Kirwin JJ, Akins RE, Wong M (1991) In vitro study of placental trophoblast calcium uptake using JEG-3 human choriocarcinoma cells. J Cell Sci 98(Pt 3):333–342

    CAS  PubMed  Google Scholar 

  43. Kovacs CS, Kronenberg HM (1997) Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev 18:832–872

    CAS  PubMed  Google Scholar 

  44. Evans KN, Bulmer JN, Kilby MD, Hewison M (2004) Vitamin D and placental-decidual function. J Soc Gynecol Investig 11:263–271

    Article  CAS  PubMed  Google Scholar 

  45. Kovacs CS (2008) Vitamin D in pregnancy and lactation: maternal, fetal, and neonatal outcomes from human and animal studies. Am J Clin Nutr 88:520S–528S

    CAS  PubMed  Google Scholar 

  46. Zehnder D, Evans KN, Kilby MD, Bulmer JN, Innes BA, Stewart PM, Hewison M (2002) The ontogeny of 25-hydroxyvitamin D(3) 1alpha-hydroxylase expression in human placenta and decidua. Am J Pathol 161:105–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Samuel S, Sitrin MD (2008) Vitamin D’s role in cell proliferation and differentiation. Nutr Rev 66:S116–124

    Article  PubMed  Google Scholar 

  48. Shahbazi M, Jeddi-Tehrani M, Zareie M, Salek-Moghaddam A, Akhondi MM, Bahmanpoor M, Sadeghi MR, Zarnani AH (2011) Expression profiling of vitamin D receptor in placenta, decidua and ovary of pregnant mice. Placenta 32:657–664

    Article  CAS  PubMed  Google Scholar 

  49. Sandovici I, Hoelle K, Angiolini E, Constancia M (2012) Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming. Reprod Biomed Online 25:68–89

    Article  PubMed  Google Scholar 

  50. Novakovic B, Sibson M, Ng HK, Manuelpillai U, Rakyan V, Down T, Beck S, Fournier T, Evain-Brion D, Dimitriadis E et al (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 284:14838–14848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Saffery R, Ellis J, Morley R (2009) A convergent model for placental dysfunction encompassing combined sub-optimal one-carbon donor and vitamin D bioavailability. Med Hypotheses 73:1023–1028

    Article  CAS  PubMed  Google Scholar 

  52. Jurutka PW, Whitfield GK, Hsieh JC, Thompson PD, Haussler CA, Haussler MR (2001) Molecular nature of the vitamin D receptor and its role in regulation of gene expression. Rev Endocr Metab Disord 2:203–216

    Article  CAS  PubMed  Google Scholar 

  53. Whitfield GK, Remus LS, Jurutka PW, Zitzer H, Oza AK, Dang HT, Haussler CA, Galligan MA, Thatcher ML, Encinas Dominguez C et al (2001) Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol 177:145–159

    Article  CAS  PubMed  Google Scholar 

  54. Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW, Coetzee GA (1997) Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 89:166–170

    Article  CAS  PubMed  Google Scholar 

  55. Niimi T, Tomita H, Sato S, Kawaguchi H, Akita K, Maeda H, Sugiura Y, Ueda R (1999) Vitamin D receptor gene polymorphism in patients with sarcoidosis. Am J Respir Crit Care Med 160:1107–1109

    Article  CAS  PubMed  Google Scholar 

  56. Morley R, Carlin JB, Pasco JA, Wark JD, Ponsonby AL (2009) Maternal 25-hydroxyvitamin D concentration and offspring birth size: effect modification by infant VDR genotype. Eur J Clin Nutr 63:802–804

    Article  CAS  PubMed  Google Scholar 

  57. Kaufmann P, Black S, Huppertz B (2003) Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 69:1–7

    Article  CAS  PubMed  Google Scholar 

  58. Crocker IP, Cooper S, Ong SC, Baker PN (2003) Differences in apoptotic susceptibility of cytotrophoblasts and syncytiotrophoblasts in normal pregnancy to those complicated with preeclampsia and intrauterine growth restriction. Am J Pathol 162:637–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Newhouse SM, Davidge ST, Winkler-Lowen B, Demianczuk N, Guilbert LJ (2007) In vitro differentiation of villous trophoblasts from pregnancies complicated by intrauterine growth restriction with and without pre-eclampsia. Placenta 28:999–1003

    Article  CAS  PubMed  Google Scholar 

  60. Huppertz B (2003) Extravillous trophoblast: proliferation and invasion during pregnancy. Pathologica 95:231–232

    CAS  PubMed  Google Scholar 

  61. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    Article  CAS  PubMed  Google Scholar 

  62. Vargas A, Moreau J, Le Bellego F, Lafond J, Barbeau B (2008) Induction of trophoblast cell fusion by a protein tyrosine phosphatase inhibitor. Placenta 29:170–174

    Article  CAS  PubMed  Google Scholar 

  63. Frendo JL, Cronier L, Bertin G, Guibourdenche J, Vidaud M, Evain-Brion D, Malassine A (2003) Involvement of connexin 43 in human trophoblast cell fusion and differentiation. J Cell Sci 116:3413–3421

    Article  CAS  PubMed  Google Scholar 

  64. Evseenko DA, Murthi P, Paxton JW, Reid G, Emerald BS, Mohankumar KM, Lobie PE, Brennecke SP, Kalionis B, Keelan JA (2007) The ABC transporter BCRP/ABCG2 is a placental survival factor, and its expression is reduced in idiopathic human fetal growth restriction. FASEB J 21:3592–3605

    Article  CAS  PubMed  Google Scholar 

  65. Yung HW, Hemberger M, Watson ED, Senner CE, Jones CP, Kaufman RJ, Charnock-Jones DS, Burton GJ (2012) Endoplasmic reticulum stress disrupts placental morphogenesis: implications for human intrauterine growth restriction. J Pathol 228:554–564

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lala PK, Lee BP, Xu G, Chakraborty C (2002) Human placental trophoblast as an in vitro model for tumor progression. Can J Physiol Pharmacol 80:142–149

    Article  CAS  PubMed  Google Scholar 

  67. Huppertz B, Kadyrov M, Kingdom JC (2006) Apoptosis and its role in the trophoblast. Am J Obstet Gynecol 195:29–39

    Article  PubMed  Google Scholar 

  68. Smith SC, Baker PN (1999) Placental apoptosis is increased in post-term pregnancies. Br J Obstet Gynaecol 106:861–862

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

T.P.H.N. contributed by performing the laboratory work, acquisition of data, analysis and interpretation, drafting and revision of the manuscript.

H.E.J.Y. assisted with the data analysis and interpretation, and revision of the manuscript.

T.C. contributed by assisting with the optimisation of cell culture experiments, data analysis and revision of the manuscript.

A.J.B. assisted with the real-time PCR analyses, data acquisition and revision of the manuscript.

S.P.B. contributed to the clinical characterisation of patient samples and critical revision of the manuscript for its intellectual content.

P.M. contributed substantially to the study concept and experimental design, data acquisition, analysis and interpretation and critical revision of the manuscript for its intellectual content.

Conflict of interest

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Murthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.P.H., Yong, H.E.J., Chollangi, T. et al. Placental vitamin D receptor expression is decreased in human idiopathic fetal growth restriction. J Mol Med 93, 795–805 (2015). https://doi.org/10.1007/s00109-015-1267-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1267-1

Keywords

Navigation