Skip to main content

Advertisement

Log in

Transient receptor potential vanilloid 4 inhibits mouse colonic motility by activating NO-dependent enteric neurotransmission

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Recent studies implicate TRPV4 receptors in visceral pain signaling and intestinal inflammation. Our aim was to evaluate the role of TRPV4 in the control of gastrointestinal (GI) motility and to establish the underlying mechanisms. We used immunohistochemistry and PCR to study TRPV4 expression in the GI tract. The effect of TRPV4 activation on GI motility was characterized using in vitro and in vivo motility assays. Calcium and nitric oxide (NO) imaging were performed to study the intracellular signaling pathways. Finally, TRPV4 expression was examined in the colon of healthy human subjects. We demonstrated that TRPV4 can be found on myenteric neurons of the colon and is co-localized with NO synthase (NOS-1). In vitro, the TRPV4 agonist GSK1016790A reduced colonic contractility and increased inhibitory neurotransmission. In vivo, TRPV4 activation slowed GI motility and reduced stool production in mouse models mimicking pathophysiological conditions. We also showed that TRPV4 activation inhibited GI motility by reducing NO-dependent Ca2+ release from enteric neurons. In conclusion, TRPV4 is involved in the regulation of GI motility in health and disease.

Key messages

• Recent studies implicate TRPV4 in pain signaling and intestinal inflammation.

• Our aim was to characterize the role of TRPV4 in the control of GI motility.

• We found that TRPV4 activation reduced colonic contractility.

• Our studies also showed altered TRPV4 mRNA expression in IBS-C patients.

• TRPV4 may be a novel pharmacological target in functional GI diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

1400W:

N-(3-Aminomethyl) benzylacetamidine, NOS-2 blocker

EFS:

Electrical field stimulation

GFAP:

Glial fibrillary acidic protein

GSK1016790A:

(N-((1S)-1-{[4-((2S)-2-{[(2,4-Dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide, TRPV4 agonist

IBS:

Irritable bowel syndrome

LMMP:

Longitudinal muscle–myenteric plexus

NANC:

Non-adrenergic, non-cholinergic

ODQ:

1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, ​soluble guanylate cyclase inhibitor

PTIO:

2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, NO scavenger

RN 1734:

2,4-Dichloro-N-isopropyl-N-(2-isopropylaminoethyl)benzenesulfonamide, TRPV4 antagonist

RuR:

Ruthenium red, TRPV antagonist

SB 366791:

4′-Chloro-3-methoxycinnamanilide, selective TRPV1 antagonist

sGC:

Soluble guanylate cyclase

SMTC:

S-Methyl-l-thiocitrulline, NOS-1 blocker

TRPV4:

Transient receptor potential vanilloid type 4

References

  1. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  2. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gao X, Wu L, O'Neil RG (2003) Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278:27129–37

    Article  CAS  PubMed  Google Scholar 

  4. Liedtke W, Tobin DM, Bargmann CI, Friedman JM (2003) Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci U S A 100(Suppl 2):14531–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–14

    CAS  PubMed  Google Scholar 

  6. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–51

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–8

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P et al (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277:13569–77

    Article  CAS  PubMed  Google Scholar 

  9. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci U S A 100:13698–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278:22664–8

    Article  CAS  PubMed  Google Scholar 

  11. Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB et al (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39:497–511

    Article  CAS  PubMed  Google Scholar 

  12. Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S et al (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578:715–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Holzer P (2011) TRP channels in the digestive system. Curr Pharm Biotechnol 12:24–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol 103:2–17

    Article  CAS  PubMed  Google Scholar 

  15. Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135(937–46):946

    Google Scholar 

  16. Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ et al (2008) Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134:2059–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sipe WE, Brierley SM, Martin CM, Phillis BD, Cruz FB, Grady EF et al (2008) Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 294:G1288–G1298

    Article  CAS  PubMed  Google Scholar 

  18. d'Aldebert E, Cenac N, Rousset P, Martin L, Rolland C, Chapman K et al (2011) Transient receptor potential vanilloid 4 activated inflammatory signals by intestinal epithelial cells and colitis in mice. Gastroenterology 140:275–85

    Article  PubMed  Google Scholar 

  19. Yamawaki H, Mihara H, Suzuki N, Nishizono H, Uchida K, Watanabe S et al (2014) Role of transient receptor potential vanilloid 4 activation in indomethacin-induced intestinal damage. Am J Physiol Gastrointest Liver Physiol 307:G33–G40

    Article  CAS  PubMed  Google Scholar 

  20. Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP et al (2008) N-((1S)-1-{[4-((2S)-2- {[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3- methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther 326:432–42

    Article  CAS  PubMed  Google Scholar 

  21. Storr MA, Keenan CM, Zhang H, Patel KD, Makriyannis A, Sharkey KA (2009) Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis. Inflamm Bowel Dis 15:1678–85

    Article  PubMed  Google Scholar 

  22. Saur D, Paehge H, Schusdziarra V, Allescher HD (2000) Distinct expression of splice variants of neuronal nitric oxide synthase in the human gastrointestinal tract. Gastroenterology 118:849–58

    Article  CAS  PubMed  Google Scholar 

  23. Saur D, Seidler B, Paehge H, Schusdziarra V, Allescher HD (2002) Complex regulation of human neuronal nitric-oxide synthase exon 1c gene transcription. Essential role of Sp and ZNF family members of transcription factors. J Biol Chem 277:25798–814

    Article  CAS  PubMed  Google Scholar 

  24. Storr M, Sibaev A, Marsicano G, Lutz B, Schusdziarra V, Timmermans JP et al (2004) Cannabinoid receptor type 1 modulates excitatory and inhibitory neurotransmission in mouse colon. Am J Physiol Gastrointest Liver Physiol 286:G110–G117

    Article  CAS  PubMed  Google Scholar 

  25. Fichna J, Schicho R, Andrews CN, Bashashati M, Klompus M, McKay DM et al (2009) Salvinorin A inhibits colonic transit and neurogenic ion transport in mice by activating kappa-opioid and cannabinoid receptors. Neurogastroenterol Motil 21:1326–e128

    Article  CAS  PubMed  Google Scholar 

  26. Grady EF, Gamp PD, Jones E, Baluk P, McDonald DM, Payan DG, Bunnett NW(1996) Endocytosis and recycling of neurokinin 1 receptors in enteric neurons. Neuroscience 75: 1239-54 DOI: 0306452296003570

  27. MacEachern SJ, Patel BA, McKay DM, Sharkey KA (2011) Nitric oxide regulation of colonic epithelial ion transport: a novel role for enteric glia in the myenteric plexus. J Physiol 589:3333–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Poole DP, Amadesi S, Veldhuis NA, Abogadie FC, Lieu T, Darby W et al (2013) Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 288:5790–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270–9

    Article  CAS  PubMed  Google Scholar 

  30. Yang XR, Lin MJ, McIntosh LS, Sham JS (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1267–L1276

    Article  CAS  PubMed  Google Scholar 

  31. Fian R, Grasser E, Treiber F, Schmidt R, Niederl P, Rosker C (2007) The contribution of TRPV4-mediated calcium signaling to calcium homeostasis in endothelial cells. J Recept Signal Transduct Res 27:113–24

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka R, Muraki K, Ohya S, Yamamura H, Hatano N, Itoh Y et al (2008) TRPV4-like non-selective cation currents in cultured aortic myocytes. J Pharmacol Sci 108:179–89

    Article  CAS  PubMed  Google Scholar 

  33. Yin J, Hoffmann J, Kaestle SM, Neye N, Wang L, Baeurle J et al (2008) Negative-feedback loop attenuates hydrostatic lung edema via acGMP-dependent regulation of transient receptor potential vanilloid 4. Circ Res 102:966–74

    Article  CAS  PubMed  Google Scholar 

  34. Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T et al (2005) Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 97:908–15

    Article  CAS  PubMed  Google Scholar 

  35. Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 28:1046–57

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Wang YH, Ge HY, Arendt-Nielsen L, Wang R, Yue SW (2008) A transient receptor potential vanilloid 4 contributes to mechanical allodynia following chronic compression of dorsal root ganglion in rats. Neurosci Lett 432:222–7

    Article  CAS  PubMed  Google Scholar 

  37. Akopian AN, Ruparel NB, Jeske NA, Patwardhan A, Hargreaves KM (2009) Role of ionotropic cannabinoid receptors in peripheral antinociception and antihyperalgesia. Trends Pharmacol Sci 30:79–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Watanabe H, Vriens J, Janssens A, Wondergem R, Droogmans G, Nilius B (2003) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium 33:489–95

    Article  CAS  PubMed  Google Scholar 

  39. Franck H, Storr M, Puschmann A, Schusdziarra V, Allescher HD (1998) Involvement of intracellular Ca2+ stores in inhibitory effects of NO donor SIN-1 and cGMP. Am J Physiol 275:G159–G168

    CAS  PubMed  Google Scholar 

  40. Stark ME, Bauer AJ, Szurszewski JH (1991) Effect of nitric oxide on circular muscle of the canine small intestine. J Physiol 444:743–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Dhaese I, Vanneste G, Sips P, Buys E, Brouckaert P, Lefebvre RA (2008) Involvement of soluble guanylate cyclase alpha(1) and alpha(2), and SK(Ca) channels in NANC relaxation of mouse distal colon. Eur J Pharmacol 589:251–9

    Article  CAS  PubMed  Google Scholar 

  42. Hofmann F, Ammendola A, Schlossmann J (2000) Rising behind NO: cGMP-dependent protein kinases. J Cell Sci 113(Pt 10):1671–6

    CAS  PubMed  Google Scholar 

  43. Mergia E, Friebe A, Dangel O, Russwurm M, Koesling D (2006) Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest 116:1731–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Van CK, Lefebvre RA (2004) Nitrergic-purinergic interactions in rat distal colon motility. Neurogastroenterol Motil 16:81–98

    Google Scholar 

  45. Takahashi T, Owyang C (1998) Regional differences in the nitrergic innervation between the proximal and the distal colon in rats. Gastroenterology 115:1504–12

    Article  CAS  PubMed  Google Scholar 

  46. Borjesson L, Nordgren S, Delbro DS (1997) DMPP causes relaxation of rat distal colon by a purinergic and a nitrergic mechanism. Eur J Pharmacol 334:223–31

    Article  CAS  PubMed  Google Scholar 

  47. Okishio Y, Niioka S, Takeuchi T, Nishio H, Hata F, Takatsuji K (2000) Differences in mediator of nonadrenergic, noncholinergic relaxation of the distal colon between Wistar-ST and Sprague-Dawley strains of rats. Eur J Pharmacol 388:97–105

    Article  CAS  PubMed  Google Scholar 

  48. Ding XL, Wang YH, Ning LP, Zhang Y, Ge HY, Jiang H et al (2010) Involvement of TRPV4-NO-cGMP-PKG pathways in the development of thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 208:194–201

    Article  CAS  PubMed  Google Scholar 

  49. Takeda-Nakazawa H, Harada N, Shen J, Kubo N, Zenner HP, Yamashita T (2007) Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea. Hear Res 230:93–104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Kevin Thorneloe (GlaxoSmithKline Pharmaceuticals, King of Prussia, PA, USA) for providing GSK1016790A for this study, Wolfgang Liedtke (Duke University, Durham, NC, USA) for providing the TRPV4−/− mice, and Drs. Catherine Legraverend (Institut de Génomique Fonctionnelle, Montpellier, France) and Richard Dyck (University of Calgary, AB, Canada) for supplying the S100β-GFP mice. SJM was supported by the Dr. T. Chen Fong Doctoral Scholarship in Neuroscience through the Hotchkiss Brain Institute and a Studentship from Alberta Innovates-Health Solutions (AI-HS). KAS is the Crohn’s and Colitis Foundation of Canada Chair in IBD Research. Supported by the Iuventus Plus program of the Polish Ministry of Science and Higher Education (0107/IP1/2013/72 to JF), Medical University of Lodz (503/1-156-04/503-01 to JF), National Science Centre (UMO-2013/11/B/NZ7/01301 and UMO-2014/13/B/NZ4/01179 to JF), NHMRC (454858 to DPP and 63303 to NWB), NIH (DK57840 to NWB), Monash University (to NWB), the Canadian Institutes of Health Research (to KAS), the Deutsche Forschungsgemeinschaft (STO 645/6-1 to MS), and the University of Calgary Research Grant Committee (to MS).

Author contributions

Concept and design: JF, DPP, SJM, KAS, MAS

Analysis and interpretation of data: JF, DPP, NV, SJM, DS, AM, PKZ, AIC, JPT

Drafting the manuscript: JF, SJM, KAS, MAS

Final approval of the version to be published: all authors

Disclosures

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Storr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fichna, J., Poole, D.P., Veldhuis, N. et al. Transient receptor potential vanilloid 4 inhibits mouse colonic motility by activating NO-dependent enteric neurotransmission. J Mol Med 93, 1297–1309 (2015). https://doi.org/10.1007/s00109-015-1336-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1336-5

Keywords

Navigation