Skip to main content
Log in

A flow cytometry-based reporter assay identifies macrolide antibiotics as nonsense mutation read-through agents

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 20 February 2016

Abstract

A large number of human diseases are caused by nonsense mutations. These mutations result in premature protein termination and the expression of truncated, usually nonfunctional products. A promising therapeutic strategy for patients suffering from premature termination codon (PTC)-mediated disorders is to suppress the nonsense mutation and restore the expression of the affected protein. Such a suppression approach using specific antibiotics and other read-through promoting agents has been shown to suppress PTCs and restore the production of several important proteins. Here, we report the establishment of a novel, rapid, and very efficient method for screening stop-codon read-through agents. We also show that, in both mammalian cells and in a transgenic mouse model, distinct members of the macrolide antibiotic family can induce read-through of disease-causing stop codons leading to re-expression of several key proteins and to reduced disease phenotypes. Taken together, our results may help in the identification and characterization of well-needed customized pharmaceutical PTC suppression agents.

Key messages

  • Establishment of a flow cytometry-based reporter assay to identify nonsense mutation read-through agents.

  • Macrolide antibiotics can induce read-through of disease-causing stop codons.

  • Macrolide-induced protein restoration can alleviate disease-like phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Floquet C, Deforges J, Rousset JP, Bidou L (2011) Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res 39:3350–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bidou L, Allamand V, Rousset JP, Namy O (2012) Sense from nonsense: therapies for premature stop codon diseases. Trends Mol Med 18:679–688

    Article  CAS  PubMed  Google Scholar 

  3. Zingman LV, Park S, Olson TM, Alekseev AE, Terzic A (2007) Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther 81:99–103

    Article  CAS  PubMed  Google Scholar 

  4. Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8:1893–1900

    Article  CAS  PubMed  Google Scholar 

  5. Mendell JT, Dietz HC (2001) When the message goes awry: disease-producing mutations that influence mRNA content and performance. Cell 107:411–414

    Article  CAS  PubMed  Google Scholar 

  6. Burke JF, Mogg AE (1985) Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 13:6265–6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nguyen LS, Wilkinson MF, Gecz J (2014) Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 46P2:175–186

    Article  Google Scholar 

  8. Keeling KM, Wang D, Conard SE, Bedwell DM (2012) Suppression of premature termination codons as a therapeutic approach. Crit Rev Biochem Mol Biol 47:444–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martin R, Mogg AE, Heywood LA, Nitschke L, Burke JF (1989) Aminoglycoside suppression at UAG, UAA and UGA codons in Escherichia coli and human tissue culture cells. Mol Gen Genet MGG 217:411–418

    Article  CAS  PubMed  Google Scholar 

  10. Bidou L, Hatin I, Perez N, Allamand V, Panthier JJ, Rousset JP (2004) Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 11:619–627

    Article  CAS  PubMed  Google Scholar 

  11. Manuvakhova M, Keeling K, Bedwell DM (2000) Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 6:1044–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Floquet C, Hatin I, Rousset JP, Bidou L (2012) Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet 8:e1002608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zilberberg A, Lahav L, Rosin-Arbesfeld R (2010) Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut 59:496–507

    Article  CAS  PubMed  Google Scholar 

  14. Nudelman I, Glikin D, Smolkin B, Hainrichson M, Belakhov V, Baasov T (2010) Repairing faulty genes by aminoglycosides: development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorg Med Chem 18:3735–3746

    Article  CAS  PubMed  Google Scholar 

  15. Maire I (2001) Is genotype determination useful in predicting the clinical phenotype in lysosomal storage diseases? J Inherit Metab Dis 24(Suppl 2):57–61, discussion 45–56

    Article  CAS  PubMed  Google Scholar 

  16. Kerem E (2004) Pharmacologic therapy for stop mutations: how much CFTR activity is enough? Curr Opin Pulm Med 10:547–552

    Article  CAS  PubMed  Google Scholar 

  17. Lee HL, Dougherty JP (2012) Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Ther 136:227–266

    Article  CAS  PubMed  Google Scholar 

  18. Nagel-Wolfrum K, Moller F, Penner I, Wolfrum U (2014) Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations. Vis Neurosci 31:309–316

    Article  PubMed  Google Scholar 

  19. Auld DS, Thorne N, Maguire WF, Inglese J (2009) Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc Natl Acad Sci U S A 106:3585–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA, Luongo C, Borenstein N, Dove W (1993) Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75:631–639

    Article  CAS  PubMed  Google Scholar 

  21. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  22. Salas-Marco J, Bedwell DM (2005) Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough. J Mol Biol 348:801–815

    Article  CAS  PubMed  Google Scholar 

  23. Keeling KM, Lanier J, Du M, Salas-Marco J, Gao L, Kaenjak-Angeletti A, Bedwell DM (2004) Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 10:691–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JF (1998) A dual-luciferase reporter system for studying recoding signals. RNA 4:479–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Howard MT, Shirts BH, Petros LM, Flanigan KM, Gesteland RF, Atkins JF (2000) Sequence specificity of aminoglycoside-induced stop condon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 48:164–169

    Article  CAS  PubMed  Google Scholar 

  26. Kallmeyer AK, Keeling KM, Bedwell DM (2006) Eukaryotic release factor 1 phosphorylation by CK2 protein kinase is dynamic but has little effect on the efficiency of translation termination in Saccharomyces cerevisiae. Eukaryot Cell 5:1378–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salas-Marco J, Fan-Minogue H, Kallmeyer AK, Klobutcher LA, Farabaugh PJ, Bedwell DM (2006) Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes. Mol Cell Biol 26:438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan-Minogue H, Bedwell DM (2008) Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. RNA 14:148–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zomer-van Ommen DD, Vijftigschild LA, Kruisselbrink E, Vonk AM, Dekkers JF, Janssens HM, de Winter-de Groot KM, van der Ent CK, Beekman JM (2015) Limited premature termination codon suppression by read-through agents in cystic fibrosis intestinal organoids. J Cyst Fibros Off J Eur Cyst Fibros Soc

  30. McElroy SP, Nomura T, Torrie LS, Warbrick E, Gartner U, Wood G, McLean WH (2013) A lack of premature termination codon read-through efficacy of PTC124 (Ataluren) in a diverse array of reporter assays. PLoS Biol 11:e1001593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dranchak PK, Di Pietro E, Snowden A, Oesch N, Braverman NE, Steinberg SJ, Hacia JG (2011) Nonsense suppressor therapies rescue peroxisome lipid metabolism and assembly in cells from patients with specific PEX gene mutations. J Cell Biochem 112:1250–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harmer SC, Mohal JS, Kemp D, Tinker A (2012) Readthrough of long-QT syndrome type 1 nonsense mutations rescues function but alters the biophysical properties of the channel. Biochem J 443:635–642

    Article  CAS  PubMed  Google Scholar 

  33. Brumm H, Muhlhaus J, Bolze F, Scherag S, Hinney A, Hebebrand J, Wiegand S, Klingenspor M, Gruters A, Krude H et al (2012) Rescue of melanocortin 4 receptor (MC4R) nonsense mutations by aminoglycoside-mediated read-through. Obesity (Silver Spring) 20:1074–1081

    Article  CAS  Google Scholar 

  34. Koopmann TT, Verkerk AO, Bezzina CR, de Bakker JM, Wilde AA (2012) The chemical compound PTC124 does not affect cellular electrophysiology of cardiac ventricular myocytes. Cardiovasc Drugs Ther Sponsored Int Soc Cardiovasc Pharmacother 26:41–45

    Article  CAS  Google Scholar 

  35. Gomez-Grau M, Garrido E, Cozar M, Rodriguez-Sureda V, Dominguez C, Arenas C, Gatti RA, Cormand B, Grinberg D, Vilageliu L (2015) Evaluation of aminoglycoside and non-aminoglycoside compounds for stop-codon readthrough therapy in four lysosomal storage diseases. PLoS One 10:e0135873

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tan L, Narayan SB, Chen J, Meyers GD, Bennett MJ (2011) PTC124 improves readthrough and increases enzymatic activity of the CPT1A R160X nonsense mutation. J Inherit Metab Dis 34:443–447

    Article  CAS  PubMed  Google Scholar 

  37. Goldmann T, Overlack N, Wolfrum U, Nagel-Wolfrum K (2011) PTC124-mediated translational readthrough of a nonsense mutation causing usher syndrome type 1C. Hum Gene Ther 22:537–547

    Article  CAS  PubMed  Google Scholar 

  38. Sarkar C, Zhang Z, Mukherjee AB (2011) Stop codon read-through with PTC124 induces palmitoyl-protein thioesterase-1 activity, reduces thioester load and suppresses apoptosis in cultured cells from INCL patients. Mol Genet Metab 104:338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matalonga L, Arias A, Tort F, Ferrer-Cortes X, Garcia-Villoria J, Coll MJ, Gort L, Ribes A (2015) Effect of readthrough treatment in fibroblasts of patients affected by lysosomal diseases caused by premature termination codons. Neurother J Am Soc Exp Neurother

  40. Pibiri I, Lentini L, Melfi R, Gallucci G, Pace A, Spinello A, Barone G, Di Leonardo A (2015) Enhancement of premature stop codon readthrough in the CFTR gene by Ataluren (PTC124) derivatives. Eur J Med Chem 101:236–244

    Article  CAS  PubMed  Google Scholar 

  41. Perlman S, Becker-Catania S, Gatti RA (2003) Ataxia-telangiectasia: diagnosis and treatment. Semin Pediatr Neurol 10:173–182

    Article  PubMed  Google Scholar 

  42. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    Article  CAS  PubMed  Google Scholar 

  43. Dragich J, Houwink-Manville I, Schanen C (2000) Rett syndrome: a surprising result of mutation in MECP2. Hum Mol Genet 9:2365–2375

    Article  CAS  PubMed  Google Scholar 

  44. Vecsler M, Ben Zeev B, Nudelman I, Anikster Y, Simon AJ, Amariglio N, Rechavi G, Baasov T, Gak E (2011) Ex vivo treatment with a novel synthetic aminoglycoside NB54 in primary fibroblasts from Rett syndrome patients suppresses MECP2 nonsense mutations. PLoS One 6:e20733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farrar MA, Kiernan MC (2014) The genetics of spinal muscular atrophy: progress and challenges. Neurother J Am Soc Exp Neurother

  46. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  CAS  PubMed  Google Scholar 

  47. Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munemitsu S, Polakis P (1993) Association of the APC gene product with beta-catenin. Science 262:1731–1734

    Article  CAS  PubMed  Google Scholar 

  48. Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papadopoulou A, Bicknell D, Bodmer WF, Tomlinson IP (2000) APC mutations in sporadic colorectal tumors: a mutational “hotspot” and interdependence of the “two hits”. Proc Natl Acad Sci U S A 97:3352–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324

    Article  CAS  PubMed  Google Scholar 

  50. Tate WP, Poole ES, Horsfield JA, Mannering SA, Brown CM, Moffat JG, Dalphin ME, McCaughan KK, Major LL, Wilson DN (1995) Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon. Biochem Cell Biol 73:1095–1103

    Article  CAS  PubMed  Google Scholar 

  51. Bonetti B, Fu L, Moon J, Bedwell DM (1995) The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251:334–345

    Article  CAS  PubMed  Google Scholar 

  52. Brown CM, Stockwell PA, Trotman CN, Tate WP (1990) Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res 18:6339–6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cavener DR, Ray SC (1991) Eukaryotic start and stop translation sites. Nucleic Acids Res 19:3185–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Q (2005) Comparative analysis of base biases around the stop codons in six eukaryotes. Biosystems 81:281–289

    Article  CAS  PubMed  Google Scholar 

  55. Phillips-Jones MK, Hill LS, Atkinson J, Martin R (1995) Context effects on misreading and suppression at UAG codons in human cells. Mol Cell Biol 15:6593–6600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martin R, Phillips-Jones MK, Watson FJ, Hill LS (1993) Codon context effects on nonsense suppression in human cells. Biochem Soc Trans 21:846–851

    Article  CAS  PubMed  Google Scholar 

  57. Harrell L, Melcher U, Atkins JF (2002) Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res 30:2011–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pacho F, Zambruno G, Calabresi V, Kiritsi D, Schneider H (2011) Efficiency of translation termination in humans is highly dependent upon nucleotides in the neighbourhood of a (premature) termination codon. J Med Genet 48:640–644

    Article  CAS  PubMed  Google Scholar 

  59. Sun J, Chen M, Xu J, Luo J (2005) Relationships among stop codon usage bias, its context, isochores, and gene expression level in various eukaryotes. J Mol Evol 61:437–444

    Article  CAS  PubMed  Google Scholar 

  60. Hu T, Li C (2010) Convergence between Wnt-beta-catenin and EGFR signaling in cancer. Mol Cancer 9:236

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Rising Tide Foundation for Clinical Cancer Research and the Gateway for Cancer Research Foundation the United States-Israel Binational Science Foundation and the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Rosin-Arbesfeld.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caspi, M., Firsow, A., Rajkumar, R. et al. A flow cytometry-based reporter assay identifies macrolide antibiotics as nonsense mutation read-through agents. J Mol Med 94, 469–482 (2016). https://doi.org/10.1007/s00109-015-1364-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1364-1

Keywords

Navigation