Skip to main content
Log in

The role of RNA editing by ADAR1 in prevention of innate immune sensing of self-RNA

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The innate immune system is the first line of the cellular defence against invading pathogens. A critical component of this defence is the capacity to discriminate foreign RNA molecules, which are distinct from most cellular RNAs in structure and/or modifications. However, a series of rare autoimmune/autoinflammatory diseases in humans highlight the propensity for the innate immune sensing system to be activated by endogenous cellular double-stranded RNAs (dsRNAs), underscoring the fine line between distinguishing self from non-self. The RNA editing enzyme ADAR1 has recently emerged as a key regulator that prevents innate immune pathway activation, principally the cytosolic dsRNA sensor MDA5, from inducing interferon in response to double-stranded RNA structures within endogenous RNAs. Adenosine-to-Inosine RNA editing by ADAR1 is proposed to destabilise duplexes formed from inverted repetitive elements within RNAs, which appear to prevent MDA5 from sensing these RNA as virus-like in the cytoplasm. Aberrant activation of these pathways has catastrophic effects at both a cellular and organismal level, contributing to one of the causes of the conditions collectively known as the type I interferonopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crow YJ, Manel N (2015) Aicardi-Goutières syndrome and the type I interferonopathies. Nat Rev Immunol 15:429–440

    Article  CAS  PubMed  Google Scholar 

  2. Crow YJ, Chase DS, Schmidt JL, Marcin S, Forte GMA, Gornall HL, Anthony O, Beverley A, Amy P, Guy H et al (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 167:296–312

    Article  CAS  Google Scholar 

  3. Barbalat R, Ewald SE, Mouchess ML, Barton GM (2011) Nucleic acid recognition by the innate immune system. Annu Rev Immunol 29:185–214

    Article  CAS  PubMed  Google Scholar 

  4. Wu J, Jiaxi W, Chen ZJ (2014) Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 32:461–488

    Article  CAS  PubMed  Google Scholar 

  5. Hur S, Sun H (2015) Molecular mechanisms of viral RNA detection: RIG-I and MDA5. Biophys J 108:335a

    Article  Google Scholar 

  6. Rice GI, Kasher PR, Forte GMA, Mannion NM, Greenwood SM, Szynkiewicz M, Dickerson JE, Bhaskar SS, Zampini M, Briggs TA et al (2012) Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet 44:1243–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314:997–1001

    Article  CAS  PubMed  Google Scholar 

  8. Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J et al (2014) Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5’-diphosphates. Nature 514:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. del Toro Duany Y, Bin W, Sun H (2015) MDA5—filament, dynamics and disease. Curr Opin Virol 12:20–25

    Article  PubMed  Google Scholar 

  10. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  CAS  PubMed  Google Scholar 

  11. Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann K-K, Schlee M et al (2006) 5’-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    Article  PubMed  Google Scholar 

  12. Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, Coch C, Janke M, Mihailovic A, Wardle G et al (2009) Recognition of 5’ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31:25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, Wenzel M, Hoffmann FS, Michallet M-C, Besch R, Hopfner K-P et al (2009) 5’-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci U S A 106:12067–12072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peisley A, Jo MH, Lin C, Wu B, Orme-Johnson M, Walz T, Hohng S, Hur S (2012) Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments. Proc Natl Acad Sci U S A 109:E3340–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276–289

    Article  CAS  PubMed  Google Scholar 

  16. Rice GI, del Toro Duany Y, Jenkinson EM, Forte GMA, Anderson BH, Giada A, Brigitte B-M, Baildam EM, Roberta B, Beresford MW et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46:503–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patterson JB, Samuel CE (1995) Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 15:5376–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E et al (2013) A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 24:365–376

    Article  PubMed  Google Scholar 

  19. Higuchi M, Miyoko H, Single FN, Martin K, Bernd S, Rolf S, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: A base-paired intron-exon structure determines position and efficiency. Cell 75:1361–1370

    Article  CAS  PubMed  Google Scholar 

  20. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78–81

    Article  CAS  PubMed  Google Scholar 

  21. Behm M, Öhman M (2016) RNA editing: a contributor to neuronal dynamics in the mammalian brain. Trends Genet 32(3):165–75

    Article  CAS  PubMed  Google Scholar 

  22. Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399:75–80

    Article  CAS  PubMed  Google Scholar 

  23. Ekdahl Y, Farahani HS, Behm M, Lagergren J, Öhman M (2012) A-to-I editing of microRNAs in the mammalian brain increases during development. Genome Res 22:1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vesely C, Tauber S, Sedlazeck FJ, von Haeseler A, Jantsch MF (2012) Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs. Genome Res 22:1468–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21

    Article  CAS  PubMed  Google Scholar 

  26. Whipple JM, Youssef OA, Aruscavage PJ, Nix DA, Hong C, Johnson WE, Bass BL (2015) Genome-wide profiling of the C. elegans dsRNAome. RNA 21:786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Osenberg S, Dominissini D, Rechavi G, Eisenberg E (2009) Widespread cleavage of A-to-I hyperediting substrates. RNA 15:1632–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Porath HT, Carmi S, Levanon EY (2014) A genome-wide map of hyper-edited RNA reveals numerous new sites. Nat Commun 5:4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hundley HA, Bass BL (2010) ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem Sci 35:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pfaller CK, Li Z, George CX, Samuel CE (2011) Protein kinase PKR and RNA adenosine deaminase ADAR1: new roles for old players as modulators of the interferon response. Curr Opin Immunol 23:573–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hartner JC, Schmittwolf C, Kispert A, Müller AM, Higuchi M, Seeburg PH (2004) Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279:4894–4902

    Article  CAS  PubMed  Google Scholar 

  32. Wang Q, Miyakoda M, Yang W, Khillan J, Stachura DL, Weiss MJ, Nishikura K (2004) Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279:4952–4961

    Article  CAS  PubMed  Google Scholar 

  33. Hartner JC, Walkley CR, Lu J, Orkin SH (2009) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10:109–115

    Article  CAS  PubMed  Google Scholar 

  34. Mannion NM, Greenwood SM, Robert Y, Sarah C, James B, David R, Christoffer N, Cornelia V, Ponting CP, McLaughlin PJ et al (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9:1482–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu S, Sharma R, Nie D, Jiao H, Im H-J, Lai Y, Zhao Z, Zhu K, Fan J, Chen D et al (2013) ADAR1 ablation decreases bone mass by impairing osteoblast function in mice. Gene 513:101–110

    Article  CAS  PubMed  Google Scholar 

  36. Wang G, Wang H, Singh S, Zhou P, Yang S, Wang Y, Zhu Z, Zhang J, Chen A, Billiar T et al (2015) ADAR1 prevents liver injury from inflammation and suppresses interferon production in hepatocytes. Am J Pathol 185:3224–3237

    Article  CAS  PubMed  Google Scholar 

  37. Jiang Q, Crews LA, Barrett CL, Chun H-J, Court AC, Isquith JM, Zipeto MA, Goff DJ, Minden M, Sadarangani A et al (2013) ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc Natl Acad Sci U S A 110:1041–1046

    Article  CAS  PubMed  Google Scholar 

  38. Pestal K, Kathleen P, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB (2015) Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43:933–944

    Article  CAS  PubMed  Google Scholar 

  39. Ota H, Sakurai M, Gupta R, Valente L, Wulff B-E, Ariyoshi K, Iizasa H, Davuluri RV, Nishikura K (2013) ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Feng S, Shu F, Heng L, Jing Z, Konstantin P, Ky L, Schwartz TU, Peter D (2011) Alternate rRNA secondary structures as regulators of translation. Nat Struct Mol Biol 18:169–176

    Article  CAS  PubMed  Google Scholar 

  41. Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, Li JB, Seeburg PH, Walkley CR (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349:1115–1120

    Article  CAS  PubMed  Google Scholar 

  42. Volkman HE, Stetson DB (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15:415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peng Z, Zhiyu P, Yanbing C, Tan BC-M, Lin K, Zhijian T, Yuankun Z, Wenwei Z, Yu L, Xueda H et al (2012) Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 30:253–260

    Article  CAS  PubMed  Google Scholar 

  44. George CX, Gokul R, Li JB, Samuel CE (2016) Editing of cellular self RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses. J Biol Chem 291(12):6158–68

    Article  CAS  PubMed  Google Scholar 

  45. Ward SV, George CX, Welch MJ, Liou L-Y, Hahm B, Lewicki H, de la Torre JC, Samuel CE, Oldstone MB (2011) RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc Natl Acad Sci U S A 108:331–336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory was/is supported by The Leukaemia Foundation (CRW); NHMRC Project Grant (CRW; APP1021216 and APP1102006), NHMRC Career Development Award (CRW; APP559016); in part by the Victorian State Government’s OIS Program (to St. Vincent’s Institute); CRW was the Leukaemia Foundation Phillip Desbrow Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl R. Walkley.

Ethics declarations

Author contribution

J.E.H-F. and C.R.W. analysed and interpreted data, provided intellectual input and wrote the manuscript.

Conflict of interest

The funders of our work had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. All authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heraud-Farlow, J.E., Walkley, C.R. The role of RNA editing by ADAR1 in prevention of innate immune sensing of self-RNA. J Mol Med 94, 1095–1102 (2016). https://doi.org/10.1007/s00109-016-1416-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1416-1

Keywords

Navigation