Skip to main content
Log in

Skeletal muscle miR-34a/SIRT1:AMPK axis is activated in experimental and human non-alcoholic steatohepatitis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) pathogenesis associates with intramyocellular lipid deposition and mitochondrial dysfunction. microRNAs (miRs), including pro-apoptotic miR-34a, are modulated during disease progression in liver tissue and plasma. We aimed to investigate the functional role of the miR-34a/SIRT1:AMP-activated protein kinase (AMPK) pathway in modulating local mitochondrial dysfunction in the skeletal muscle of human and experimental non-alcoholic steatohepatitis. Muscle biopsies were obtained from morbid obese NAFLD patients undergoing bariatric surgery. C57BL/6N mice were fed different NAFLD-inducing diets and C2C12 muscle cells incubated with palmitic acid (PA) in the presence or absence of an AMPK activator, or upon miR-34a functional modulation. Several muscle miRNAs, including miR-34a, were found increased with human NAFLD progression. Activation of the miR-34a/SIRT1:AMPK pathway, concomitant with impairment in insulin signalling mediators and deregulation of mitochondrial-shaping proteins, was evident in C2C12 cells incubated with PA, as well as in the skeletal muscle of all three diet-induced NAFLD mice models. Functional studies established the association between miR-34a- and PA-induced muscle cell deregulation. Of note, activation of AMPK almost completely prevented miR-34a- and PA-induced cellular stress. In addition, the miR-34a/SIRT1:AMPK pathway and mitochondrial dynamics dysfunction were also found amplified in muscle of human NAFLD. Finally, muscle miR-34a expression and mitofusin 2 (Mfn2) protein levels correlated with hallmarks of NAFLD and disease progression. Our results indicate that activation of the miR-34a/SIRT1:AMPK pathway leads to mitochondrial dynamics dysfunction in skeletal muscle of human and experimental NAFLD, representing an appealing prospective target in metabolic syndrome.

Key messages

  • Skeletal muscle microRNAs are modulated during NAFLD progression.

  • Palmitic acid-induced muscle cell dysfunction occurs, at least in part, through activation of the miR-34a/SIRT1:AMPK pathway.

  • miR-34a/SIRT1:AMPK activation associates with mitochondria dynamics dysfunction in human NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AMPK:

AMP-activated protein kinase

BSA:

Bovine serum albumin

CDAA:

Choline-deficient amino acid-defined

Drp1:

Dynamin-related protein 1

FF:

Fast food

FFA:

Free fatty acid

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HFCD:

High-fat choline-deficient

INSR:

Insulin receptor

IR:

Insulin resistance

IRS1:

Insulin receptor substrate 1

LKB1:

Liver Kinase B1

miRNAs/miRs:

MicroRNAs

Mfn2:

Mitofusin 2

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

PA:

Palmitic acid

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator-1α

SIRT1:

Sirtuin 1

UDCA:

Ursodeoxycholic acid

References

  1. Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science. 332(6037):1519–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Machado MV, Ferreira DM, Castro RE, Silvestre AR, Evangelista T, Coutinho J et al (2012) Liver and muscle in morbid obesity: the interplay of fatty liver and insulin resistance. PLoS One 7(2):e31738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boden G (2006) Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diab Rep 6(3):177–181

    Article  CAS  PubMed  Google Scholar 

  4. Lee YH, Jung KS, Kim SU, Yoon HJ, Yun YJ, Lee BW, Kang ES, Han KH, Lee HC, Cha BS (2015) Sarcopaenia is associated with NAFLD independently of obesity and insulin resistance: Nationwide surveys (KNHANES 2008-2011). J Hepatol 63(2):486–493

    Article  PubMed  Google Scholar 

  5. Szabo G, Csak T (2016) Role of MicroRNAs in NAFLD/NASH. Dig Dis Sci 61(5):1314–1324

    Article  CAS  PubMed  Google Scholar 

  6. Ferreira DM, Simao AL, Rodrigues CM, Castro RE (2014) Revisiting the metabolic syndrome and paving the way for microRNAs in non-alcoholic fatty liver disease. FEBS J 281(11):2503–2524

    Article  CAS  PubMed  Google Scholar 

  7. Rodrigues PM, Afonso MB, Simao AL, Carvalho CC, Trindade A, Duarte A et al (2017) miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice. Cell Death Dis 8(4):e2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ (2008) Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 48(6):1810–1820

    Article  CAS  PubMed  Google Scholar 

  9. Castro RE, Ferreira DM, Afonso MB, Borralho PM, Machado MV, Cortez-Pinto H et al (2013) miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol 58(1):119–125

    Article  CAS  PubMed  Google Scholar 

  10. Ding J, Li M, Wan X, Jin X, Chen S, Yu C, Li Y (2015) Effect of miR-34a in regulating steatosis by targeting PPARalpha expression in nonalcoholic fatty liver disease. Sci Rep 5:13729

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105(36):13421–13426

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F et al (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298(4):E751–E760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 458(7241):1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sunny NE, Bril F, Cusi K (2017) Mitochondrial adaptation in nonalcoholic fatty liver disease: novel mechanisms and treatment strategies. Trends Endocrinol Metab 28(4):250–260

    Article  CAS  PubMed  Google Scholar 

  15. Nasrallah CM, Horvath TL (2014) Mitochondrial dynamics in the central regulation of metabolism. Nat Rev Endocrinol 10(11):650–658

    Article  CAS  PubMed  Google Scholar 

  16. Zorzano A (2009) Regulation of mitofusin-2 expression in skeletal muscle. Appl Physiol Nutr Metab 34(3):433–439

    Article  CAS  PubMed  Google Scholar 

  17. Galloway CA, Lee H, Brookes PS, Yoon Y (2014) Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 307(6):G632–G641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferreira DM, Castro RE, Machado MV, Evangelista T, Silvestre A, Costa A et al (2011) Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease. Diabetologia. 54(7):1788–1798

    Article  CAS  PubMed  Google Scholar 

  19. Dvinge H, Bertone P (2009) HTqPCR: high-throughput analysis and visualization of quantitative real-time PCR data in R. Bioinformatics. 25(24):3325–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, Schmittgen TD, Croce C, Ghoshal K, Jacob ST (2009) Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology. 50(4):1152–1161

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigues PMVRS (2017) A role for miRNA-21 in non-alcoholic fatty liver disease pathogenesis. University of Lisbon, Lisbon

    Google Scholar 

  22. Kishida N, Matsuda S, Itano O, Shinoda M, Kitago M, Yagi H, Abe Y, Hibi T, Masugi Y, Aiura K, Sakamoto M, Kitagawa Y (2016) Development of a novel mouse model of hepatocellular carcinoma with nonalcoholic steatohepatitis using a high-fat, choline-deficient diet and intraperitoneal injection of diethylnitrosamine. BMC Gastroenterol 16(1):61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang C, Aye CC, Li X, Diaz Ramos A, Zorzano A, Mora S (2012) Mitochondrial dysfunction in insulin resistance: differential contributions of chronic insulin and saturated fatty acid exposure in muscle cells. Biosci Rep 32(5):465–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma M, Juvvuna PK, Kukreti H, McFarlane C (2014) Mega roles of microRNAs in regulation of skeletal muscle health and disease. Front Physiol 5:239

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283(15):9836–9843

    Article  CAS  PubMed  Google Scholar 

  26. Paul R, Lee J, Donaldson AV, Connolly M, Sharif M, Natanek SA, Rosendahl U, Polkey MI, Griffiths M, Kemp PR (2018) miR-422a suppresses SMAD4 protein expression and promotes resistance to muscle loss. J Cachexia Sarcopenia Muscle 9(1):119–128

    Article  PubMed  Google Scholar 

  27. Wang ZC, Wang ZZ, Ma HJ, Wang CC, Wang HT (2018) Attenuation of the hypoxia-induced miR-34a protects cardiomyocytes through maintenance of glucose metabolism. Biochem Biophys Res Commun 498(3):375–381

    Article  CAS  PubMed  Google Scholar 

  28. Birkenfeld AL, Shulman GI (2014) Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 59(2):713–723

    Article  PubMed  Google Scholar 

  29. Lan F, Cacicedo JM, Ruderman N, Ido Y (2008) SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283(41):27628–27635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen X, Xu S, Wei S, Deng Y, Li Y, Yang F, Liu P (2016) Comparative proteomic study of fatty acid-treated myoblasts reveals role of Cox-2 in palmitate-induced insulin resistance. Sci Rep 6:21454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3(6):403–416

    Article  CAS  PubMed  Google Scholar 

  32. Afonso MB, Rodrigues PM, Simao AL, Castro RE (2016) Circulating microRNAs as potential biomarkers in non-alcoholic fatty liver disease and hepatocellular carcinoma. J Clin Med 5(3). https://doi.org/10.3390/jcm5030030

  33. Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, Gorden P, Kahn CR (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 542(7642):450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chai C, Rivkin M, Berkovits L, Simerzin A, Zorde-Khvalevsky E, Rosenberg N, Klein S, Yaish D, Durst R, Shpitzen S, Udi S, Tam J, Heeren J, Worthmann A, Schramm C, Kluwe J, Ravid R, Hornstein E, Giladi H, Galun E (2017) Metabolic circuit involving free fatty acids, microRNA 122, and triglyceride synthesis in liver and muscle tissues. Gastroenterology. 153(5):1404–1415

    Article  CAS  PubMed  Google Scholar 

  35. Mueller M, Castro RE, Thorell A, Marschall HU, Auer N, Herac M, Rodrigues CMP, Trauner M (2018) Ursodeoxycholic acid: effects on hepatic unfolded protein response, apoptosis and oxidative stress in morbidly obese patients. Liver Int 38(3):523–531

    Article  CAS  PubMed  Google Scholar 

  36. Ferreira DM, Afonso MB, Rodrigues PM, Simao AL, Pereira DM, Borralho PM et al (2014) c-Jun N-terminal kinase 1/c-Jun activation of the p53/microRNA 34a/sirtuin 1 pathway contributes to apoptosis induced by deoxycholic acid in rat liver. Mol Cell Biol 34(6):1100–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steinberg GR, Smith AC, Van Denderen BJ, Chen Z, Murthy S, Campbell DJ et al (2004) AMP-activated protein kinase is not down-regulated in human skeletal muscle of obese females. J Clin Endocrinol Metab 89(9):4575–4580

    Article  CAS  PubMed  Google Scholar 

  38. Hojlund K, Mustard KJ, Staehr P, Hardie DG, Beck-Nielsen H, Richter EA et al (2004) AMPK activity and isoform protein expression are similar in muscle of obese subjects with and without type 2 diabetes. Am J Physiol Endocrinol Metab 286(2):E239–E244

    Article  CAS  PubMed  Google Scholar 

  39. Jiang LQ, de Castro Barbosa T, Massart J, Deshmukh AS, Lofgren L, Duque-Guimaraes DE et al (2016) Diacylglycerol kinase-delta regulates AMPK signaling, lipid metabolism, and skeletal muscle energetics. Am J Physiol Endocrinol Metab 310(1):E51–E60

    Article  PubMed  Google Scholar 

  40. Adrian L, Lenski M, Todter K, Heeren J, Bohm M, Laufs U (2017) AMPK prevents palmitic acid-induced apoptosis and lipid accumulation in cardiomyocytes. Lipids. 52(9):737–750

    Article  CAS  PubMed  Google Scholar 

  41. Han L, Liu J, Zhu L, Tan F, Qin Y, Huang H, Yu Y (2018) Free fatty acid can induce cardiac dysfunction and alter insulin signaling pathways in the heart. Lipids Health Dis 17(1):185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Petta S, Ciminnisi S, Di Marco V, Cabibi D, Camma C, Licata A et al (2017) Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 45(4):510–518

    Article  CAS  PubMed  Google Scholar 

  43. Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR (2016) Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab 311(4):E730–EE40

    Article  PubMed  Google Scholar 

  44. Jheng HF, Tsai PJ, Guo SM, Kuo LH, Chang CS, Su IJ, Chang CR, Tsai YS (2012) Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 32(2):309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wen F, An C, Wu X, Yang Y, Xu J, Liu Y, Wang C, Nie L, Fang H, Yang Z (2018) MiR-34a regulates mitochondrial content and fat ectopic deposition induced by resistin through the AMPK/PPARalpha pathway in HepG2 cells. Int J Biochem Cell Biol 94:133–145

    Article  CAS  PubMed  Google Scholar 

  46. Soriano FX, Liesa M, Bach D, Chan DC, Palacin M, Zorzano A (2006) Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes. 55(6):1783–1791

    Article  CAS  PubMed  Google Scholar 

  47. Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel SP, Andrzejewski S, Raissi TC, Pause A, St.-Pierre J, Jones RG (2017) AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep 21(1):1–9

    Article  CAS  PubMed  Google Scholar 

  48. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135

    Article  CAS  PubMed  Google Scholar 

  49. Liao ZY, Chen JL, Xiao MH, Sun Y, Zhao YX, Pu D, Lv AK, Wang ML, Zhou J, Zhu SY, Zhao KX, Xiao Q (2017) The effect of exercise, resveratrol or their combination on sarcopenia in aged rats via regulation of AMPK/Sirt1 pathway. Exp Gerontol 98:177–183

    Article  CAS  PubMed  Google Scholar 

  50. Sebastian D, Sorianello E, Segales J, Irazoki A, Ruiz-Bonilla V, Sala D et al (2016) Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J 35(15):1677–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Tânia Carvalho, Histology and Comparative Pathology Laboratory, Instituto de Medicina Molecular, for the histological and pathology analyses and Drª Elisa Alves, Clinical Analysis Core Laboratory, Faculty of Pharmacy, University of Lisbon, for serum analyses. The study was supported in part by Gilead Sciences Research Scholars Program in International Liver Disease and Fundação para a Ciência e a Tecnologia (FCT) through grants PTDC/BIM-MEC/0895/2014 and UID/DTP/04138/2013, and fellowships SFRH/BD/91119/2012 (MBA), SFRH/BD/88212/2012 (PMR), and SFRH/BD/104160/2014 (ALS). Work in MGC lab is supported by a centre grant to BioISI, reference UID/MULTI/04046/2013, from FCT/MCTES/PIDDAC, Portugal.

Author information

Authors and Affiliations

Authors

Contributions

RC and CR were responsible for the study concept and design, obtained funding and interpreted the data. AS was involved in performing the experiments, analysis and data interpretation and writing. MA and PR helped in performing the experiments. MGC performed the miRNA array analysis. MM and HCP were responsible for the collection and selection of human specimens. All authors critically revised the manuscript and approved its final version.

Corresponding author

Correspondence to Rui E. Castro.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.57 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simão, A.L., Afonso, M.B., Rodrigues, P.M. et al. Skeletal muscle miR-34a/SIRT1:AMPK axis is activated in experimental and human non-alcoholic steatohepatitis. J Mol Med 97, 1113–1126 (2019). https://doi.org/10.1007/s00109-019-01796-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01796-8

Keywords

Navigation