Skip to main content

Advertisement

Log in

Endogenous cortisol excess confers a unique lipid signature and metabolic network

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Chronic cortisol excess induces several alterations on protein, lipid and carbohydrate metabolism resembling those found in the metabolic syndrome. However, patients exposed to prolonged high levels of cortisol in Cushing syndrome (CS) present exceeding cardiometabolic alterations not reflected by conventional biomarkers. Using 3 ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS) platforms, we aimed to characterise the serum metabolome of 25 patients with active endogenous CS and 25 control subjects matched by propensity score (sex, BMI, diabetes mellitus type 2 (T2D), high blood pressure (HBP) and dyslipidaemia) to search for potential disease-specific biomarkers and pathways associated to the clinical comorbidities. A total of 93 metabolites were significantly altered in patients with CS. Increased levels of sulfur amino acids (AA), triacylglycerols, glycerophospholipids, ceramides and cholesteryl esters were observed. Contrarily, concentrations of essential and non-essential AA, polyunsaturated fatty acids, conjugated bile acids and second messenger glycerolipids were decreased. Twenty-four-hour urinary free cortisol (24h-UFC) independently determined the concentration of 21 lipids and 4 AA. A metabolic signature composed by 10 AA and 10 lipid metabolites presented an AUC-ROC of 95% for the classification of CS patients. Through differential network analysis, 152 aberrant associations between metabolites involved in the Lands cycle and Kennedy pathway were identified. Our data indicates that chronic hypercortisolemia confers a unique lipidomic signature and several alterations in numerous AA even when compared to patients with similar metabolic comorbidities providing novel insights of the increased cardiometabolic burden of CS.

Key messages

• Cortisol excess induces metabolic alterations beyond conventional biomarkers.

• The hypercortisolism extent determines the concentration of 21 lipids and 5 aa.

• Cortisol excess confers a unique metabolic signature of 20 metabolites.

• Kennedy and Lands cycle are profoundly disturbed by cortisol excess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data, materials and software application or custom code support their published claims and comply with field standards. All metabolomic data generated and analysed during this study is included in the present manuscript and as supplementary spreadsheets material in the initial submission (Additional File 2). The clinical dataset of the participants included in the study is available from the corresponding author upon reasonable request. Codes employed in R (programming language) for the present study are available from the corresponding author upon reasonable request.

References

  1. Lacroix A, Feelders RA, Stratakis CA, Nieman LK (2015) Cushing’s syndrome. Lancet 386:913–927

    Article  CAS  PubMed  Google Scholar 

  2. Ntali G, Asimakopoulou A, Siamatras T, Komninos J, Vassiliadi D, Tzanela M, Tsagarakis S, Grossman AB, Wass JAH, Karavitaki N (2013) Mortality in Cushing’s syndrome: systematic analysis of a large series with prolonged follow-up. Eur J Endocrinol 169:715–723

    Article  CAS  PubMed  Google Scholar 

  3. Chanson P, Salenave S (2010) Metabolic syndrome in Cushing’s syndrome. Neuroendocrinology 92:96–101

    Article  CAS  PubMed  Google Scholar 

  4. Pivonello R, Isidori AM, De Martino MC et al (2016) Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol 4:611–629

    Article  CAS  PubMed  Google Scholar 

  5. Di Dalmazi G, Quinkler M, Deutschbein T et al (2017) Cortisol-related metabolic alterations assessed by mass spectrometry assay in patients with Cushing’s syndrome. Eur J Endocrinol 177:227–237

    Article  PubMed  Google Scholar 

  6. Faggiano A, Pivonello R, Melis D, Alfieri R, Filippella M, Spagnuolo G, Salvatore F, Lombardi G, Colao A (2002) Evaluation of circulating levels and renal clearance of natural amino acids in patients with Cushing’s disease. J Endocrinol Investig 25:142–151

    Article  CAS  Google Scholar 

  7. Lu Y, Zhang Z, Xiong X, Wang X, Li J, Shi G, Yang J, Zhang X, Zhang H, Hong J, Xia X, Ning G, Li X (2012) Glucocorticoids promote hepatic cholestasis in mice by inhibiting the transcriptional activity of the farnesoid X receptor. Gastroenterology 143:1630–1640

    Article  CAS  PubMed  Google Scholar 

  8. Faggiano A, Melis D, Alfieri R, de Martino MC, Filippella M, Milone F, Lombardi G, Colao A, Pivonello R (2005) Sulfur amino acids in Cushing’s disease: insight in homocysteine and taurine levels in patients with active and cured disease. J Clin Endocrinol Metab 90:6616–6622

    Article  CAS  PubMed  Google Scholar 

  9. Zamboni N, Saghatelian A, Patti GJ (2015) Defining the metabolome: size, flux, and regulation. Mol Cell 58:699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nieman LK, Biller BMK, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM (2008) The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93:1526–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Centro de investigacion biomedica en red I de salud C (2015) Understanding obesity (Ob), metabolic syndrome (MetS), type 2 diabetes (T2DM) and fatty liver disease (FL): a multidisciplinary approach. In: Proy. Integr. Excel. – Convoc. AES2014. https://www.ciberisciii.es/media/1002074/ciberehd_understandingob.pdf. Accessed 14 Feb 2020

  12. Tokarz J, Haid M, Cecil A, Prehn C, Artati A, Möller G, Adamski J (2017) Endocrinology meets metabolomics: achievements, pitfalls, and challenges. Trends Endocrinol Metab 28:705–721

    Article  CAS  PubMed  Google Scholar 

  13. Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res 46:399–424

    Article  Google Scholar 

  14. Aranda G, Fernandez-Ruiz R, Palomo M, Romo M, Mora M, Halperin I, Casals G, Enseñat J, Vidal O, Diaz-Ricart M, Hanzu FA (2018) Translational evidence of prothrombotic and inflammatory endothelial damage in Cushing syndrome after remission. Clin Endocrinol 88:415–424

    Article  CAS  Google Scholar 

  15. Aranda G, Careaga M, Hanzu FA, Patrascioiu I, Ríos P, Mora M, Morales-Romero B, Jiménez W, Halperin I, Casals G (2016) Accuracy of immunoassay and mass spectrometry urinary free cortisol in the diagnosis of Cushing’s syndrome. Pituitary 19:496–502

    Article  CAS  PubMed  Google Scholar 

  16. Wagner C, Veyrie N, Martín-Duce A et al (2010) Liquid chromatography−mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. J Proteome Res 9:4501–4512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Fernández-Escalante C, Clement K, Andrade RJ et al (2012) Obesity-dependent metabolic signatures associated with nonalcoholic fatty liver disease progression. J Proteome Res 11:2521–2532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mayo R, Alonso C, Mato JM et al (2015) Enhancing metabolomics research through data mining. J Proteome 127:275–288

    Article  CAS  Google Scholar 

  20. Van Der Kloet FM, Bobeldijk I, Verheij ER, Jellema RH (2009) Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. J Proteome Res 8:5132–5141

    Article  PubMed  CAS  Google Scholar 

  21. Wiedermann W, Hagmann M, von Eye A (2015) Significance tests to determine the direction of effects in linear regression models. Br J Math Stat Psychol 68:116–141

    Article  PubMed  Google Scholar 

  22. Hu T, Zhang W, Fan Z et al (2016) Metabolomics differential correlation network analysis of osteoarthritis. Pac Symp Biocomput:120–131. https://doi.org/10.1142/9789814749411_0012

  23. Li Z, Zhang Y, Hu T, Likhodii S, Sun G, Zhai G, Fan Z, Xuan C, Zhang W (2018) Differential metabolomics analysis allows characterization of diversity of metabolite networks between males and females. PLoS One 13:1–10

    Google Scholar 

  24. Ferraù F, Korbonits M (2015) Metabolic comorbidities in Cushing’s syndrome. Eur J Endocrinol 173:M133–M157

    Article  PubMed  CAS  Google Scholar 

  25. Ong SLH, Whitworth JA (2011) How do glucocorticoids cause hypertension: role of nitric oxide deficiency, oxidative stress, and eicosanoids. Endocrinol Metab Clin N Am 40:393–407

    Article  CAS  Google Scholar 

  26. Naray-Fejes-Tóth A, Rosenkranz B, Frölich JC, Fejes-Tóth G (1988) Glucocorticoid effect on arachidonic acid metabolism in vivo. J Steroid Biochem 30:155–159

    Article  PubMed  Google Scholar 

  27. Serhan CN, Yacoubian S, Yang R (2008) Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol Mech Dis 3:279–312

    Article  CAS  Google Scholar 

  28. Hasan AU, Ohmori K, Hashimoto T, Kamitori K, Yamaguchi F, Rahman A, Tokuda M, Kobori H (2018) PPARγ activation mitigates glucocorticoid receptor-induced excessive lipolysis in adipocytes via homeostatic crosstalk. J Cell Biochem 119:4627–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arnaldi G, Scandali VM, Trementino L, Cardinaletti M, Appolloni G, Boscaro M (2010) Pathophysiology of dyslipidemia in Cushing’s syndrome. Neuroendocrinology 92:86–90

    Article  CAS  PubMed  Google Scholar 

  30. Dolinsky VW, Douglas DN, Lehner R, Vance DE (2004) Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem J 378:967–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vance JE, Tasseva G (2013) Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta Mol Cell Biol Lipids 1831:543–554

    Article  CAS  Google Scholar 

  32. Liu X, Zheng P, Zhao X, Zhang Y, Hu C, Li J, Zhao J, Zhou J, Xie P, Xu G (2015) Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J Proteome Res 14:2322–2330

    Article  CAS  PubMed  Google Scholar 

  33. Meikle PJ, Wong G, Barlow CK, Weir JM, Greeve MA, MacIntosh GL, Almasy L, Comuzzie AG, Mahaney MC, Kowalczyk A, Haviv I, Grantham N, Magliano DJ, Jowett JBM, Zimmet P, Curran JE, Blangero J, Shaw J (2013) Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS One 8:e74341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stegemann C, Pechlaner R, Willeit P, Langley SR, Mangino M, Mayr U, Menni C, Moayyeri A, Santer P, Rungger G, Spector TD, Willeit J, Kiechl S, Mayr M (2014) Lipidomics profiling and risk of cardiovascular disease in the prospective population-based bruneck study. Circulation 129:1821–1831

    Article  CAS  PubMed  Google Scholar 

  35. Law S-H, Chan M-L, Marathe GK, Parveen F, Chen CH, Ke LY (2019) An updated review of lysophosphatidylcholine metabolism in human diseases. Int J Mol Sci 20:1149

    Article  CAS  PubMed Central  Google Scholar 

  36. Gibellini F, Smith TK (2010) The Kennedy pathway-de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62:414–428

    Article  CAS  PubMed  Google Scholar 

  37. Boulgaropoulos B, Amenitsch H, Laggner P, Pabst G (2010) Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase. Biophys J 99:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–179

    Article  CAS  PubMed  Google Scholar 

  39. Xia JY, Morley TS, Scherer PE (2014) The adipokine/ceramide axis: key aspects of insulin sensitization. Biochimie 96:130–139

    Article  CAS  PubMed  Google Scholar 

  40. Kurz J, Parnham MJ, Geisslinger G, Schiffmann S (2019) Ceramides as novel disease biomarkers. Trends Mol Med 25:20–32

    Article  CAS  PubMed  Google Scholar 

  41. Chaurasia B, Summers SA (2015) Ceramides - lipotoxic inducers of metabolic disorders. Trends Endocrinol Metab 26:538–550

    Article  CAS  PubMed  Google Scholar 

  42. Brunkhorst-Kanaan N, Klatt-Schreiner K, Hackel J, Schröter K, Trautmann S, Hahnefeld L, Wicker S, Reif A, Thomas D, Geisslinger G, Kittel-Schneider S, Tegeder I (2019) Targeted lipidomics reveal derangement of ceramides in major depression and bipolar disorder. Metabolism 95:65–76

    Article  CAS  PubMed  Google Scholar 

  43. Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, Suoniemi M, Hurme R, März W, Scharnagl H, Stojakovic T, Vlachopoulou E, Lokki ML, Nieminen MS, Klingenberg R, Matter CM, Hornemann T, Jüni P, Rodondi N, Räber L, Windecker S, Gencer B, Pedersen ER, Tell GS, Nygård O, Mach F, Sinisalo J, Lüscher TF (2016) Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J 37:1967–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hilvo M, Meikle PJ, Pedersen ER, Tell GS, Dhar I, Brenner H, Schöttker B, Lääperi M, Kauhanen D, Koistinen KM, Jylhä A, Huynh K, Mellett NA, Tonkin AM, Sullivan DR, Simes J, Nestel P, Koenig W, Rothenbacher D, Nygård O, Laaksonen R (2020) Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur Heart J 41:371–380

    CAS  PubMed  Google Scholar 

  45. Eloranta JJ, Jung D, Kullak-Ublick GA (2006) The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-γ coactivator-1α, and suppressed by bile acids via a small heterodimer partner-dependent mechanism. Mol Endocrinol 20:65–79

    Article  CAS  PubMed  Google Scholar 

  46. Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E (2013) Human insulin resistance is associated with increased plasma levels of 12a-hydroxylated bile acids. Diabetes 62:4184–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahmad TR, Haeusler RA (2019) Bile acids in glucose metabolism and insulin signalling — mechanisms and research needs. Nat Rev Endocrinol 15:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. García-Eguren G, Giró O, Romero MDM, Grasa M, Hanzu FA (2019) Chronic hypercortisolism causes more persistent visceral adiposity than HFD-induced obesity. J Endocrinol 242:65–77

    Article  PubMed  Google Scholar 

  49. Lee IT, Atuahene A, Egritag HE, Wang L, Donovan M, Buettner C, Geer EB (2019) Active Cushing disease is characterized by increased adipose tissue macrophage presence. J Clin Endocrinol Metab 104:2453–2461

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rui WS, Adam J, Brandmaier S et al (2016) Metformin effect on nontargeted metabolite profiles in patients with type 2 diabetes and in multiple murine tissues. Diabetes 65:3776–3785

    Article  CAS  Google Scholar 

  51. Würtz P, Wang Q, Soininen P, Kangas AJ, Fatemifar G, Tynkkynen T, Tiainen M, Perola M, Tillin T, Hughes AD, Mäntyselkä P, Kähönen M, Lehtimäki T, Sattar N, Hingorani AD, Casas JP, Salomaa V, Kivimäki M, Järvelin MR, Davey Smith G, Vanhala M, Lawlor DA, Raitakari OT, Chaturvedi N, Kettunen J, Ala-Korpela M (2016) Metabolomic profiling of statin use and genetic inhibition of HMG-CoA reductase. J Am Coll Cardiol 67:1200–1210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Arturo Vega-Beyhart sincerely acknowledges the Mexican National Council of Science and Technology (CONACYT) for the scholarship granted to pursue his doctorate at the University of Barcelona.

Funding

This work was supported by 2 grants of the Carlos III Health Institute of MINECO, Spain (FIS PI1500859 and PIE14/00031).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Felicia A Hanzu, Adriana Pané, Ramon Gomis, Gemma Rojo, Arturo Vega-Beyhart

Data: Felicia A Hanzu, Arturo Vega-Beyhart, Adriana Pané, Guillermo García-Eguren, Oriol Giró, Laura Boswell, Gloria Aranda, Vanesa Flores, Francesc Carmona, Joaquim Enseñat, Oscar Vidal, Mireia Mora, Irene Halperin, Gemma Rojo

Formal analysis: Felicia A Hanzu, Arturo Vega-Beyhart, Marta Iruarrizaga, Ting Hu, Guillermo García-Eguren, Oriol Giró, Gregori Casals

Funding acquisition: Felicia A Hanzu, Gemma Rojo, Ramon Gomis

Investigation: All authors participated

Supervision: Felicia A Hanzu

Writing, review and editing: All authors participated

Corresponding author

Correspondence to Felicia A Hanzu.

Ethics declarations

Ethics approval

The present study followed international and national regulations including the Declaration of Helsinki and national notes for guidance on Good Clinical Practice CPMP/ICH/135/95. The Institutional Research and Ethics Committee at Hospital Clínic de Barcelona approved the present study (Comité de Ética de la Investigación con medicamentos del Hospital Clínic de Barcelona). The Institutional Research and Ethics Committee at Hospital Regional Universitario de Málaga approved the present study (Comité de Ética de la Investigación Provincial de Málaga).

Consent to participate

Written informed consent was obtained from all participants prior to study inclusion and are available under considerable request.

Consent for publication

Not applicable. No personal nor any clinical details of participants are presented.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 792 kb)

ESM 2

(XLSX 6486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega-Beyhart, A., Iruarrizaga, M., Pané, A. et al. Endogenous cortisol excess confers a unique lipid signature and metabolic network. J Mol Med 99, 1085–1099 (2021). https://doi.org/10.1007/s00109-021-02076-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02076-0

Keywords

Navigation