Skip to main content
Log in

Mitochondrial respiration inhibitor enhances the anti-tumor effect of high-dose ascorbic acid in castration-resistant prostate cancer

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Previous evidences have demonstrated that anti-tumor effect of high-dose ascorbic acid is associated with the generation of reactive oxygen species (ROS) via autoxidation. Hypoxia induces therapy resistance in castration-resistant prostate cancer. As a mitochondrial respiration inhibitor, metformin has the potential to improve tumor oxygenation. In this study, we evaluate the anti-tumor effect of ascorbic acid combined with metformin in prostate cancer. We demonstrated that ascorbic acid inhibits prostate cancer cells proliferation by generating ROS, and metformin enhances the anti-tumor effects of ascorbic acid. Mechanistically, metformin reduces oxygen consumption rate and NADP+/NADPH value in prostate cancer cells, thereby increases the ROS content induced by ascorbic acid. In addition, our data demonstrated that ascorbic acid inhibits p-AKT signaling in a ROS-dependent pathway, leading to inhibition of p-mTOR expression. And metformin inhibits the p-mTOR expression by activating the AMPK signaling pathway, exerting a synergistic effect on tumor suppression with ascorbic acid. Furthermore, metformin improves tumor oxygenation, and the combined treatment effect of ascorbic acid and metformin were demonstrated in a xenograft model of prostate cancer. Taken together, our data demonstrate that metformin enhances the anti-tumor proliferation effect of ascorbic acid by increasing ROS content in castration-resistant prostate cancer. This provides a new strategy for the clinical application of high-dose ascorbic acid as an anti-tumor drug.

Key messages

  • Ascorbic acid inhibits tumor growth by inducing ROS generation.

  • As a mitochondrial respiration inhibitor, metformin inhibits cellular oxygen consumption rate to improve oxygenation of prostate cancer.

  • Metformin enhances anti-tumor effect of ascorbic acid by increasing ROS content.

  • Ascorbic acid inhibits the mTOR expression via PI3K-AKT pathway, and metformin inhibits the mTOR expression by inhibiting AMPK signaling in prostate cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q (2014) High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med 6:222ra218. https://doi.org/10.1126/scitranslmed.3007154

  2. Verrax J, Calderon PB (2009) Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radical Biol Med 47:32–40. https://doi.org/10.1016/j.freeradbiomed.2009.02.016

    Article  CAS  Google Scholar 

  3. Du J, Martin SM, Levine M, Wagner BA, Buettner GR, Wang SH, Taghiyev AF, Du C, Knudson CM, Cullen JJ (2010) Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer. Clin Cancer Res Off J Am Assoc Cancer Res 16:509–520. https://doi.org/10.1158/1078-0432.ccr-09-1713

    Article  CAS  Google Scholar 

  4. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M (2008) Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA 105:11105–11109. https://doi.org/10.1073/pnas.0804226105

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E, Levine M (2005) Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA 102:13604–13609. https://doi.org/10.1073/pnas.0506390102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E, Choyke PL, Pooput C, Kirk KL, Buettner GR et al (2007) Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA 104:8749–8754. https://doi.org/10.1073/pnas.0702854104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Du J, Cullen JJ, Buettner GR (2012) Ascorbic acid: chemistry, biology and the treatment of cancer. Biochem Biophys Acta 1826:443–457. https://doi.org/10.1016/j.bbcan.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  8. Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, Sandhu S, Carlisle TL, Smith MC, Abu Hejleh T et al (2017) O(2)(-) and H(2)O(2)-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell 31:487-500.e488. https://doi.org/10.1016/j.ccell.2017.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16:79. https://doi.org/10.1186/s12943-017-0648-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274. https://doi.org/10.1016/j.cell.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H et al (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19:575–586. https://doi.org/10.1016/j.ccr.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crumbaker M, Khoja L, Joshua AM (2017) AR signaling and the PI3K pathway in prostate cancer. Cancers. https://doi.org/10.3390/cancers9040034

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, Rebello RJ, Macpherson AA, Koushyar S, Furic L et al (2018) Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with Pten loss to accelerate progression and castration-resistant growth. Cancer Discov 8:764–779. https://doi.org/10.1158/2159-8290.cd-17-0867

    Article  CAS  PubMed  Google Scholar 

  15. Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758. https://doi.org/10.1152/physrev.1997.77.3.731

    Article  CAS  PubMed  Google Scholar 

  16. Justus CR, Sanderlin EJ, Yang LV (2015) Molecular connections between cancer cell metabolism and the tumor microenvironment. Int J Mol Sci 16:11055–11086. https://doi.org/10.3390/ijms160511055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ackerman D, Simon MC (2014) Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol 24:472–478. https://doi.org/10.1016/j.tcb.2014.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47. https://doi.org/10.1038/nrc704

    Article  CAS  PubMed  Google Scholar 

  19. Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235. https://doi.org/10.1089/ars.2007.1628

    Article  CAS  PubMed  Google Scholar 

  20. Fraga A, Ribeiro R, Príncipe P, Lopes C, Medeiros R (2015) Hypoxia and prostate cancer aggressiveness: a tale with many endings. Clin Genitourin Cancer 13:295–301. https://doi.org/10.1016/j.clgc.2015.03.006

    Article  PubMed  Google Scholar 

  21. Hompland T, Hole KH, Ragnum HB, Aarnes EK, Vlatkovic L, Lie AK, Patzke S, Brennhovd B, Seierstad T, Lyng H (2018) Combined MR imaging of oxygen consumption and supply reveals tumor hypoxia and aggressiveness in prostate cancer patients. Can Res 78:4774–4785. https://doi.org/10.1158/0008-5472.can-17-3806

    Article  CAS  Google Scholar 

  22. Hsieh A, Edlind M (2014) PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl 16:378. https://doi.org/10.4103/1008-682x.122876

    Article  PubMed  PubMed Central  Google Scholar 

  23. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 3):607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pollak M (2010) Metformin and other biguanides in oncology: advancing the research agenda. Cancer Prev Res (Phila) 3:1060–1065. https://doi.org/10.1158/1940-6207.capr-10-0175

    Article  CAS  PubMed  Google Scholar 

  25. Zannella VE, Dal Pra A, Muaddi H, McKee TD, Stapleton S, Sykes J, Glicksman R, Chaib S, Zamiara P, Milosevic M et al (2013) Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin Cancer Res Off J Am Assoc Cancer Res 19:6741–6750. https://doi.org/10.1158/1078-0432.ccr-13-1787

    Article  CAS  Google Scholar 

  26. Yang B, Damodaran S, Khemees TA, Filon MJ, Schultz A, Gawdzik J, Etheridge T, Malin D, Richards KA, Cryns VL et al (2020) Synthetic lethal metabolic targeting of androgen deprived prostate cancer cells with metformin. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.mct-19-1141

  27. Edlind MP, Hsieh AC (2014) PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl 16:378–386. https://doi.org/10.4103/1008-682x.122876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bitting RL, Armstrong AJ (2013) Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr Relat Cancer 20:R83-99. https://doi.org/10.1530/erc-12-0394

    Article  CAS  PubMed  Google Scholar 

  29. Kutluk Cenik B, Ostapoff KT, Gerber DE, Brekken RA (2013) BIBF 1120 (nintedanib), a triple angiokinase inhibitor, induces hypoxia but not EMT and blocks progression of preclinical models of lung and pancreatic cancer. Mol Cancer Ther 12:992–1001. https://doi.org/10.1158/1535-7163.mct-12-0995

    Article  CAS  PubMed  Google Scholar 

  30. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239. https://doi.org/10.1007/s10555-007-9055-1

    Article  CAS  PubMed  Google Scholar 

  31. Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P (2008) Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8:207–220. https://doi.org/10.2174/156652408784221306

    Article  CAS  PubMed  Google Scholar 

  32. Baek MW, Cho HS, Kim SH, Kim WJ, Jung JY (2017) Ascorbic acid induces necrosis in human laryngeal squamous cell carcinoma via ROS, PKC, and calcium signaling. J Cell Physiol 232:417–425. https://doi.org/10.1002/jcp.25438

    Article  CAS  PubMed  Google Scholar 

  33. Sinnberg T, Noor S, Venturelli S, Berger A, Schuler P, Garbe C, Busch C (2014) The ROS-induced cytotoxicity of ascorbate is attenuated by hypoxia and HIF-1alpha in the NCI60 cancer cell lines. J Cell Mol Med 18:530–541. https://doi.org/10.1111/jcmm.12207

    Article  CAS  PubMed  Google Scholar 

  34. Olney KE, Du J, van ’t Erve TJ, Witmer JR, Sibenaller ZA, Wagner BA, Buettner GR, Cullen JJ (2013) Inhibitors of hydroperoxide metabolism enhance ascorbate-induced cytotoxicity. Free Radical Res 47:154–163. https://doi.org/10.3109/10715762.2012.755263

    Article  CAS  Google Scholar 

  35. Bize IB, Oberley LW, Morris HP (1980) Superoxide dismutase and superoxide radical in Morris hepatomas. Can Res 40:3686–3693

    CAS  Google Scholar 

  36. Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131. https://doi.org/10.1021/ar50088a003

    Article  CAS  Google Scholar 

  37. de Mey S, Jiang H, Corbet C, Wang H, Dufait I, Law K, Bastien E, Verovski V, Gevaert T, Feron O et al (2018) Antidiabetic Biguanides radiosensitize hypoxic colorectal cancer cells through a decrease in oxygen consumption. Front Pharmacol 9:1073. https://doi.org/10.3389/fphar.2018.01073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng Z, Luo G, Shi X, Long Y, Shen W, Li Z, Zhang X (2020) The X(c)(-) inhibitor sulfasalazine improves the anti-cancer effect of pharmacological vitamin C in prostate cancer cells via a glutathione-dependent mechanism. Cell Oncol (Dordr) 43:95–106. https://doi.org/10.1007/s13402-019-00474-8

    Article  CAS  PubMed  Google Scholar 

  39. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619. https://doi.org/10.1038/nrg1879

    Article  CAS  PubMed  Google Scholar 

  40. Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52:381–400. https://doi.org/10.1146/annurev-pharmtox-010611-134537

    Article  CAS  PubMed  Google Scholar 

  41. Gagliardi PA, Puliafito A, Primo L (2018) PDK1: At the crossroad of cancer signaling pathways. Semin Cancer Biol 48:27–35. https://doi.org/10.1016/j.semcancer.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  42. Berenjeno IM, Piñeiro R, Castillo SD, Pearce W, McGranahan N, Dewhurst SM, Meniel V, Birkbak NJ, Lau E, Sansregret L et al (2017) Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling. Nat Commun 8:1773. https://doi.org/10.1038/s41467-017-02002-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405. https://doi.org/10.1016/j.cell.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang J, Manning BD (2009) A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 37:217–222. https://doi.org/10.1042/bst0370217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Julien LA, Carriere A, Moreau J, Roux PP (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30:908–921. https://doi.org/10.1128/mcb.00601-09

    Article  CAS  PubMed  Google Scholar 

  46. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22. https://doi.org/10.1016/j.ccr.2010.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toren P, Zoubeidi A (2014) Targeting the PI3K/Akt pathway in prostate cancer: challenges and opportunities (review). Int J Oncol 45:1793–1801. https://doi.org/10.3892/ijo.2014.2601

    Article  CAS  PubMed  Google Scholar 

  48. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X (2019) Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 18:26. https://doi.org/10.1186/s12943-019-0954-x

    Article  PubMed  PubMed Central  Google Scholar 

  49. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B et al (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17:113–124. https://doi.org/10.1016/j.cmet.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  50. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968. https://doi.org/10.1016/j.cell.2006.06.055

    Article  CAS  PubMed  Google Scholar 

  51. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226. https://doi.org/10.1016/j.molcel.2008.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jewell U, Kvietikova I, Scheid A, Bauer C, Wenger R, Gassmann M (2001) Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J Off Publ Fed Am Soc Exp Biol 15:1312–1314. https://doi.org/10.1096/fj.00-0732fje

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Science Foundation of China (grant number 81901793), Project of National Major Scientific Instrument and Equipment Development (2013YQ03092306), and Project of Nanchong Science and Technology Bureau ( 19SXHZ0263).

Author information

Authors and Affiliations

Authors

Contributions

XSZ and JQ had the original idea for this study. JQ, THY, and YLL designed the study, performed the experiments, and wrote the first draft of the manuscript. PH, WQS, and LP were responsible for analyzing the data and writing the manuscript. BZ, XCS, and ZLL were responsible for the project administration. All authors read an approved the final manuscript.

Corresponding author

Correspondence to Xiangsong Zhang.

Ethics declarations

Ethics approval

All experiments were approved by the Institutional Animal Care and Use Committee of the First Affiliated Hospital of Sun Yat-Sen University and conformed to the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 307 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Yang, T., Long, Y. et al. Mitochondrial respiration inhibitor enhances the anti-tumor effect of high-dose ascorbic acid in castration-resistant prostate cancer. J Mol Med 101, 125–138 (2023). https://doi.org/10.1007/s00109-022-02273-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02273-5

Keywords

Navigation