Skip to main content
Log in

Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract.

PCR-based identification of all 13 known self-incompatibility (S) alleles of sweet cherry is reported. Two pairs of consensus primers were designed from our previously published cDNA sequences of S 1 to S 6 S-RNases, the stylar components of self-incompatibility, to reveal length variation of the first and the second introns. With the exception of the first intron of S 13 , these also amplified S 7 to S 14 and an allele previously referred to as S x , which we now label S 16 . The genomic PCR products were cloned and sequenced. The partial sequence of S 11 matched that of S 7 and the alleles were shown to have the same functional specificity. Allele-specific primers were designed for S 7 to S 16 , so that allele-specific primers are now available for all 13 S alleles of cherry (S 8 , S 11 and S 15 are duplicates). These can be used to distinguish between S alleles with introns of similar size and to confirm genotypes determined with consensus primers. The reliability of the PCR with allele-specific primers was improved by the inclusion of an internal control. The use of the consensus and allele-specific primers was demonstrated by resolving conflicting genotypes that have been published recently and by determining genotypes of 18 new cherry cultivars. Two new groups are proposed, Group XXIII (S 3 S 16 ), comprising 'Rodmersham Seedling' and 'Strawberry Heart', and Group XXIV (S 6 S 12 ), comprising 'Aida' and 'Flamentiner'. Four new self-compatibility genotypes, S 3 S 3 ′, S 4 S 6 , S 4 S 9 and S 4 S 13 , were found. The potential use of the consensus primers to reveal incompatibility alleles in other cherry species is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Brózik S, Apostol J (2000) In: Brózik S, Kállay Tné (eds) Csonthéjas gyümölcsfajták. Mezögazda Kiadó, Budapest

  • Bošković R, Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90:245–250

    CAS  Google Scholar 

  • Bošković R, Tobutt KR (2001) Genotyping cherry cultivars assigned to incompatibility groups, by analysing stylar ribonucleases. Theor Appl Genet 103:475–485

    Google Scholar 

  • Bošković R, Russell K, Tobutt KR (1997) Inheritance of stylar ribonucleases in cherry progenies, and reassignment of incompatibility alleles to two incompatibility groups. Euphytica 95:221–228

    Article  Google Scholar 

  • Bošković R, Tobutt KR, Schmidt H, Sonneveld T (2000) Re-examination of (in)compatibility genotypes of two John Innes self-compatible sweet cherry selections. Theor Appl Genet 101:234–240

    Article  Google Scholar 

  • Broothaerts W, Janssens GA, Proost P, Broekaert WF (1995) cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol 27:499–511

    CAS  PubMed  Google Scholar 

  • Channuntapipat C, Sedgley M, Collins G (2001) Sequences of the cDNAs and genomic DNAs encoding the S 1 , S 7 , S 8 and S f alleles from almond, Prunus dulcis. Theor Appl Genet 103:1115–1122

    Article  CAS  Google Scholar 

  • Choi C, Livermore K, Andersen RL (2000) Sweet cherry pollination: recommendation based on compatibility groups and bloom time. J Am Pomological Soc 54:148–152

    Google Scholar 

  • Coleman CE, Kao T-h (1992) The flanking regions of two Petunia inflate S alleles are heterogeneous and contain repetitive sequences. Plant Mol Biol 18:725–735

    CAS  PubMed  Google Scholar 

  • Crane MB, Brown AG (1937) Incompatibility and sterility in the sweet cherry, Prunus avium L. J Pomol Hort Sci 15:86–116

    Google Scholar 

  • Crane MB, Lawrence WJC (1929) Genetical and cytological aspects of incompatibility and sterility in cultivated fruits. J Pomol Hort Sci 7:276–301

    Google Scholar 

  • Edin M, Lichou J, Saunier R (1997) Les variétés. In: Edin M, Lichou J, Saunier R (eds) Cerise, les variétés et leur conduite. Ctifl, Paris, pp 135–229

  • Hauck NR, Iezzoni AF, Yamane H, Tao R (2001) Revisiting the S-allele nomenclature in sweet cherry (Prunus avium) using RFLP profiles. J Am Soc Hort Sci 126:654–660

    CAS  Google Scholar 

  • Igic B, Kohn JR (2001) Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA 98:13,167–13,171

    Article  Google Scholar 

  • Ishimizu T, Inoue K, Shimonaka M, Saito T, Terai O, Norioka S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor Appl Genet 98:961–967

    Article  CAS  Google Scholar 

  • Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W (1995) A molecular method for S-allele identification in apple based on allele-specific PCR. Theor Appl Genet 91:691–698

    CAS  Google Scholar 

  • Janssens GA, Van Haute AM, Keulemans J, Broothaerts W, Broekaert FW (1996) PCR analysis of self-incompatibility alleles in apple applied to leaves, seed embryos and in vitro shoots. Acta Hort 484:403–407

    Google Scholar 

  • Lewis D, Crowe LK (1954) Structure of the incompatibility gene. IV. Types of mutations in Prunus avium L. Heredity 8:357–363

    Google Scholar 

  • Ma R-C, Oliveira MM (2001) Molecular cloning of the self-incompatibility genes S 1 and S 3 from almond (Prunus dulcis cv Ferragnès). Sex Plant Reprod 14:163–167

    CAS  Google Scholar 

  • Matsumoto S, Kitahara K (2000) Discovery of a new self-incompatibility allele in apple. HortScience 35:1329–1332

    CAS  Google Scholar 

  • Matthews P, Dow KP (1969) Incompatibility groups: sweet cherry (Prunus avium). In: Knight RL (ed), Abstract bibliography of fruit breeding and genetics to 1965, Prunus. Commonwealth Agricultural Bureaux, Farnham Royal, pp 540–544

  • Matthews P, Lapins K (1967) Self-fertile sweet cherries. Fruit Var Hortic Digest 21:36–37

    Google Scholar 

  • Matton DP, Mau S-L, Okamoto S, Clarke AE, Newbigin E (1995) The S-locus of Nicotiana alata: genomic organization and sequence analysis of two S-RNase alleles. Plant Mol Biol 28:847–858

    CAS  PubMed  Google Scholar 

  • Olmstead JW, Ophardt DR, Lang GA (2000) Sweet cherry breeding at Washington State University. Acta Hort 522:103–109

    Google Scholar 

  • Saba-El-Leil MK, Rivard S, Morse D, Cappadocia M (1994) The S 11 and S 13 self-incompatibility alleles in Solanum chacoense Bitt. are remarkably similar. Plant Mol Biol 24:571–583

    CAS  PubMed  Google Scholar 

  • Sakurai K, Brown SK, Weeden N (2000) Self-incompatibility alleles of apple cultivars and advanced selections. HortScience 35:116–119

    CAS  Google Scholar 

  • Sansavini S, Lugli S (1997) Tre stelle per la cerasicoltura italiana: 'Early Star', 'Blaze Star', 'LaLa Star'. Rivista di Frutticol 10:68–69

    Google Scholar 

  • Schmidt H (1999) On the genetics of incompatibility in sweet cherries. Acta Hort 484:233–237

    Google Scholar 

  • Schmidt H, Wolfram B, Bošković B (1999) Befruchtungsverhältnisse bei Süßkirschen (flower biology in sweet cherries). Erwerbsobstbau 41:42–45

    Google Scholar 

  • Sonneveld T, Robbins TP, Bošković R, Tobutt KR (2001) Cloning of six cherry self-incompatibility alleles and development of allele-specific PCR detection. Theor Appl Genet 102:1046–1055

    CAS  Google Scholar 

  • Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hort Sci 124:224–233

    CAS  Google Scholar 

  • Tao R, Habu T, Yamane H, Sugiura A, Iwamoto K (2000) Molecular markers for self-compatibility in Japanese apricot (Prunus mume). HortScience 35:1121–1123

    CAS  Google Scholar 

  • Tamura M, Ushijima K, Sassa H, Hirano H, Tao R, Gradziel TM, Dandekar AM (2000) Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theor Appl Genet 101:344–349

    Article  CAS  Google Scholar 

  • Tobutt KR (2002) 'Penny' – a new cherry variety from HRI-East Malling. The National Fruit Show [Handbook] 2002:40–41

  • Tobutt KR, Bošković R, Sonneveld T (2001) Cherry (in)compatibility genotypes – harmonization of recent results from UK, Canada, Germany, Japan and USA. Eucarpia Fruit Breed Sect Newslett 5:41–46

    Google Scholar 

  • Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260:261–268

    CAS  PubMed  Google Scholar 

  • Van Nerum I, Geerts M, Van Haute A, Keulemans J, Broothaerts W (2001) Re-examination of the self-incompatibility genotype of apple cultivars containing putative 'new' S-alleles. Theor Appl Genet 103:584–591

    Google Scholar 

  • Verdoodt L, Van Haute A, Goderis IJ, De Witte K, Keulemans J, Broothaerts W (1998) Use of the multi-allelic self-incompatibility gene in apple to assess homozygosity in shoots obtained through haploid induction. Theor Appl Genet 96:294–300

    Article  CAS  Google Scholar 

  • Wiersma PA, Wu Z (1998) A full-length cDNA for phenylalanine ammonia-lyase cloned from ripe sweet cherry fruit (Prunus avium; accession no. AF036948) (PGR98-184). Plant Physiol 118:1102

    Google Scholar 

  • Wiersma PA, Wu Z, Zhou L, Hampson C, Kappel F (2001) Identification of new self-incompatibility alleles in sweet cherry (Prunus avium L.) and clarification of incompatibility groups by PCR and sequencing analysis. Theor Appl Genet 102:700–708

    Article  CAS  Google Scholar 

  • Yaegaki H, Shimada T, Moriguchi T, Hayama H, Haji T, Yamaguchi M (2001) Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.). Sex Plant Reprod 13:251–257

    CAS  Google Scholar 

  • Yamane H, Tao R, Murayama H, Ishiguro M, Abe Y, Soejima J, Sugiura A (2000a) Determining S-genotypes of two sweet cherry (Prunus avium L.) cultivars, 'Takasago (Rockport Bigarreau)' and 'Hinode (Early Purple)'. J Jap Soc Hort Sci 69:29–34

    CAS  Google Scholar 

  • Yamane H, Tao R, Murayama H, Sugiura A (2000b) Determining the S-genotypes of several sweet cherry cultivars based on PCR-RFLP analysis. J Hort Sci Biotechnol 75:562–567

    CAS  Google Scholar 

Download references

Acknowledgements.

We are grateful to Emma-Jane Lamont (National Fruit Collections, Brogdale, UK), Dr. M. Fischer (BAZ, Dresden, Germany), Dr. R. Andersen (Cornell University, New York, USA), Dr. P. Wiersma and Dr. F. Kappel (Agriculture and Agri-Food Canada, Pacific AgriFood Research Centre, Summerland, Canada), Dr. D. Thompson (Saanich, Canada) and Dr. C. Weeks (USDA/ARS Germplasm Repository Davis, California, USA) for supply of material. Tineke Sonneveld acknowledges receipt of a studentship from the University of Nottingham and Horticulture Research International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Tobutt.

Additional information

Communicated by H.F. Linskens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonneveld, T., Tobutt, K.R. & Robbins, T.P. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor Appl Genet 107, 1059–1070 (2003). https://doi.org/10.1007/s00122-003-1274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1274-4

Keywords.

Navigation