Skip to main content

Advertisement

Log in

The detection of QTLs in barley associated with endosperm hardness, grain density, grain size and malting quality using rapid phenotyping tools

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Using a barley mapping population, ‘Vlamingh’ × ‘Buloke’ (V × B), whole grain analyses were undertaken for physical seed traits and malting quality. Grain density and size were predicted by digital image analysis (DIA), while malt extract and protein content were predicted using near infrared (NIR) analysis. Validation of DIA and NIR algorithms confirmed that data for QTL analysis was highly correlated (R 2 > 0.82), with high RPD values (the ratio of the standard error of prediction to the standard deviation, 2.31–9.06). Endosperm hardness was measured on this mapping population using the single kernel characterisation system. Grain density and endosperm hardness were significantly inter-correlated in all three environments (r > 0.22, P < 0.001); however, other grain components were found to interact with the traits. QTL for these traits were also found on different genomic regions, for example, grain density QTLs were found on chromosomes 2H and 6H, whereas endosperm hardness QTLs were found on 1H, 5H, and 7H. In this study, the majority of the genomic regions associated with grain texture were also coincident with QTLs for grain size, yield, flowering date and/or plant development genes. This study highlights the complexity of genomic regions associated with the variation of endosperm hardness and grain density, and their relationships with grain size traits, agronomic-related traits, and plant development loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agu RC, Brosnan JM, Bringhurst TA, Palmer GH, Jack FR (2007) Influence of corn size distribution on the diastatic power of malted barley and its impact on other malt quality parameters. J Agric Food Chem 55(9):3702–3707

    Article  PubMed  CAS  Google Scholar 

  • Allison MJ (1986) Relationships between milling energy and hot water extract values of malts from some modern barleys and their parental cultivars. J Inst Brew 92:604–607

    Article  CAS  Google Scholar 

  • Ayoub M, Symons SJ, Edney MJ, Mather DE (2002) QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. TAG 105(2/3):237–247. doi:10.1007/s00122-002-0941-1

    PubMed  CAS  Google Scholar 

  • Beecher B, Bowman J, Martin JM, Bettge AD, Morris CF, Blake TK, Giroux MJ (2002) Hordoindolines are associated with a major endosperm-texture QTL in barley (Hordeum vulgare). Genome 45(3):584–591

    Article  PubMed  CAS  Google Scholar 

  • Bezant JH, Laurie DA, Pratchett N, Chojecki J, Kearsey MJ (1997) Mapping of QTL controlling NIR predicted hot water extract and grain nitrogen content in a spring barley cross using marker-regression. Plant Breed 116(2):141–145

    Article  CAS  Google Scholar 

  • Bingham IJ, Blake J, Foulkes MJ, Spink J (2007) Is barley yield in the UK sink limited? II. Factors affecting potential grain size. Field Crops Res 101(2):212–220

    Article  Google Scholar 

  • Black CK, Panozzo JF (2002) Predicting malting quality in whole grain malt compared to whole grain barley by near infrared spectroscopy. In: Paper presented at the near infrared spectroscopy, Proceedings of the 10th international conference, Korea

  • Black CK, Panozzo JF (2004) Accurate technique for measuring color values of grain and grain products using a visible-NIR instrument. Cereal Chem 81(4):469–474. doi:10.1094/cchem.2004.81.4.469

    Article  CAS  Google Scholar 

  • Black CK, Panozzo JF, Ford R (2008) Quantitative mapping of the chromosomal loci associated with physical grain traits in barley. In: Paper presented at the proceedings of the 58th Australian cereal chemistry conference, Surfers Paradise

  • Brennan CS, Harris N, Smith D, Shewry PR (1996) Structural differences in the mature endosperms of good and poor malting barley cultivars. J Cereal Sci 24(2):171–177

    Article  Google Scholar 

  • Briggs DE, Sole SM, Bury P (2001) Flotation, a bulk-selection method for breeders which permits the selection of faster modifying barley grains. J Inst Brew 107(3):151–156

    Article  CAS  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the snthesis of cell wall (1,3;1,4)-β-d-glucans. Science 311(5769):1940–1942. doi:10.1126/science.1122975

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Langridge P, Powell W (2004) Comparative sequence analysis of the region harboring the hardness locus in barley and its colinear region in rice. Plant Physiol 136(2):3177–3190

    Article  PubMed  CAS  Google Scholar 

  • Camm JP, Ellis RP, Morrison WR (1990) Milling energy: an investigation into the biochemical basis of hardness in cereals. Aspects Appl Biol 25:121–130

    Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39(4):1184

    Article  CAS  Google Scholar 

  • Cane K, Spackman M, Eagles HA (2004) Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. AJAR 55(1):89–95. doi:10.1071/AR03108

    Article  CAS  Google Scholar 

  • Chang CS (1988) Measuring density and porosity of grain kernels using a gas pycnometer. Cereal Chem 65(1):13–15

    Google Scholar 

  • Chen G-Y, Yang S-D, Li W-T, Li W, Wei Y-M, Zheng Y-L (2009) Variations of single nucleotide polymorphism (SNP) of hordoindoline a gene (hina) and its relationships with kernel hardness in 92 North American barley varieties (Hordeum vulgare L.). Agric Sci China 8(12):1440–1447. doi:10.1016/S1671-2927(08)60357-0

    Article  CAS  Google Scholar 

  • Chutimanitsakun Y, Nipper R, Cuesta-Marcos A, Cistue L, Corey A, Filichkina T, Johnson E, Hayes P (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 12(1):4. doi:10.1186/1471-2164-12-4

    Article  PubMed  CAS  Google Scholar 

  • Close T, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szűcs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10(1):582. doi:10.1186/1471-2164-10-582

    Article  PubMed  Google Scholar 

  • Collins HM, Panozzo JF, Logue SJ, Jefferies SP, Barr AR (2003) Mapping and validation of chromosome regions associated with high malt extract in barley (Hordeum vulgare L.). AJAR 54(12):1223–1240. doi:10.1071/AR02201

    Article  CAS  Google Scholar 

  • Coventry SJ, Barr AR, Eglinton JK, McDonald GK (2003) The determinants and genome locations influencing grain weight and size in barley (Hordeum vulgare L.). AJAR 54(12):1103–1115. doi:10.1071/AR02194

    Article  CAS  Google Scholar 

  • Cuesta-Marcos A, Szucs P, Close T, Filichkin T, Muehlbauer G, Smith K, Hayes P (2010) Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genomics 11(1):707. doi:10.1186/1471-2164-11-707

    Article  PubMed  CAS  Google Scholar 

  • EBC-4.5.1 (1998) Extract of malt: congress mash European brewery convention analytica—EBC. Verlag Hans Carl Geranke-Fachverlag, Nurnberg

    Google Scholar 

  • Edney MJ, Izydorczyk MS, Symons SJ, Woodbeck N (2005) Measuring barley kernel colour and size to predict end use malt quality. Grain Research Laboratory/Industry services collaborative study on valuing barley, 2005. Canadian Grains Commission, Winnepeg

  • Fang C, Campbell GM (2000) Effect of measurement method and moisture content on wheat kernel density measurement. Food Bioprod Process 78(4):179–186. doi:10.1205/09603080051065278

    Article  Google Scholar 

  • Fox GP, Osborne B, Bowman J, Kelly A, Cakir M, Poulsen D, Inkerman A, Henry R (2007) Measurement of genetic and environmental variation in barley (Hordeum vulgare) grain hardness. J Cereal Sci 46(1):82–92. doi:10.1016/j.jcs.2006.12.003

    Article  CAS  Google Scholar 

  • Galassi E, Gazzelloni G, Taddei F, Muccilli V, Gazza L, Pogna N (2011) Kernel texture and hordoindoline patterns in barley (Hordeum vulgare). Mol Breed 1–12. doi:10.1007/s11032-012-9738-3

  • Galiba G, Vágújfalvi A, Li C, Soltész A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176(1):12–19. doi:10.1016/j.plantsci.2008.09.016

    Article  CAS  Google Scholar 

  • Gamlath J, Aldred GP, Panozzo JF (2008) Barley (1-3; 1-4)-b-glucan and arabinoxylan content are related to kernel hardness and water uptake. J Cereal Sci 47:365–371. doi:10.1016/j.jcs.2007.05.017

    Article  CAS  Google Scholar 

  • Gao W, Clancy JA, Han F, Jones BL, Budde A, Wesenberg DM, Kleinhofs A, Ullrich SE (2004) Fine mapping of a malting-quality QTL complex near the chromosome 4H S telomere in barley. TAG 109(4):750–760. doi:10.1007/s00122-004-1688-7

    Article  PubMed  CAS  Google Scholar 

  • Hayes PM, Castro A, Marquez-Cedillo L, Corey A, Henson C, Jones BL, Kling J, Mather D, Matus I, Rossi C, Sato K (2003) Genetic diversity for quantitatively inherited agronomic and malting quality traits. In: Von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Hervé D, Fabre F, Berrios EF, Leroux N, Chaarani GA, Planchon C, Sarrafi A, Gentzbittel L (2001) QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under greenhouse conditions. J Exp Bot 52(362):1857–1864. doi:10.1093/jexbot/52.362.1857

    Article  PubMed  Google Scholar 

  • Holopainen URM, Wilhelmson A, Salmenkallio-Marttila M, Peltonen-Sainio P, Rajala A, Reinikainen P, Kotaviita E, Simolin H, Home S (2005) Endosperm structure affects the malting auality of barley (Hordeum vulgare L.). J Agric Food Chem 53(18):7279–7287. doi:10.1021/jf050349b

    Article  PubMed  CAS  Google Scholar 

  • Hyten D, Song Q, Choi I-Y, Yoon M-S, Specht J, Matukumalli L, Nelson R, Shoemaker R, Young N, Cregan P (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. TAG 116(7):945–952. doi:10.1007/s00122-008-0726-2

    Article  PubMed  CAS  Google Scholar 

  • IOB (1991) Recommended methods of analysis, 2nd edn. In: Ale, larger and distilling malts. IOB, London

  • Karsai I, Szűcs P, Kőszegi B, Hayes PM, Casas A, Bedő Z, Veisz O (2008) Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach. J Exp Bot 59(10):2707–2715. doi:10.1093/jxb/ern131

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda TK, Mano YM (2002) Molecular mapping of the intermedium spike-c (int-c) and non-brittle rachis 1 (btr1) loci in barley (Hordeum vulgare L.). TAG 105(1):85–90. doi:10.1007/s00122-001-0858-0

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda T, Tanno K-I, Salomon BR, Bryngelsson T, Bothmer RV (1999) Phylogeny in the genus Hordeum based on nucleotide sequences closely linked to the vrs1 locus (row number of spikelets). Genome 42(5):973–981. doi:10.1139/g99-025

    PubMed  CAS  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci 104(4):1424–1429. doi:10.1073/pnas.0608580104

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Schwarz PB, Barr JM, Horsley RD (2008) Factors predicting malt extract within a single barley cultivar. J Cereal Sci 48(2):531–538. doi:10.1016/j.jcs.2007.12.004

    Article  CAS  Google Scholar 

  • March TJ, Richter D, Colby T, Harzen A, Schmidt J, Pillen K (2012) Identification of proteins associated with malting quality in a subset of wild barley introgression lines. Proteomics 12(18):2843–2851. doi:10.1002/pmic.201200117

    Article  PubMed  CAS  Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SE, Wesenberg DM (2000) QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. TAG 101(1):173–184. doi:10.1007/s001220051466

    CAS  Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SE, Wesenberg DM (2001) QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. TAG 103(4):625–637. doi:10.1007/pl00002919

    Article  CAS  Google Scholar 

  • Mather DE, Tinker NA, LaBerge DE, Edney M, Jones BL, Rossnagel BG, Legge WG, Briggs KG, Irvine RB, Falk DE, Kasha KJ (1997) Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci 37(2):544–554

    Article  CAS  Google Scholar 

  • Mayolle JE, Lullien-Pellerin V, Corbineau F, Boivin P, Guillard V (2012) Water diffusion and enzyme activities during malting of barley grains: a relationship assessment. J Food Eng 109(3):358–365. doi:10.1016/j.jfoodeng.2011.11.021

    Article  CAS  Google Scholar 

  • Moody DB, Tait S, Walker C, Panozzo JP, Emebiri LC, Hayden M (2009) Genetic dissection of grain plumpness in barley. In: Paper presented at the proceedings of the 14th Australian barley technical symposium, Sunshine Coast

  • Morris CF, DeMacon VL, Giroux MJ (1999) Wheat grain hardness among chromosome 5D homozygous recombinant substitution lines using different methods of measurement. Cereal Chem 76(2):249–254

    Article  CAS  Google Scholar 

  • Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4(3):238–249. doi:10.3835/plantgenome2011.08.0023

    Article  Google Scholar 

  • Nair S, Ullrich SE, Blake TK, Cooper B, Griffey CA, Hayes PM, Hole DJ, Horsley RD, Obert DE, Smith KP, Muehlbauer GJ, Baik BK (2010) Variation in kernel hardness and associated traits in U.S. barley breeding lines. Cereal Chem 87(5):461–466. doi:10.1094/cchem-12-09-0163

    Article  CAS  Google Scholar 

  • Nair S, Knoblauch M, Ullrich S, Baik B-K (2011) Microstructure of hard and soft kernels of barley. J Cereal Sci 54(3):354–362. doi:10.1016/j.jcs.2011.06.014

    Article  Google Scholar 

  • Natsuga M, Kawamura S (2006) Visible and near-infrared reflectance spectroscopy for determining physicochemical properties of rice. Trans ASABE 49(4):1069–1076

    CAS  Google Scholar 

  • Nielsen JP (2003) Evaluation of malting barley quality using exploratory data analysis II. The use of kernel hardness and image analysis as screening methods. J Cereal Sci 38(3):247–255. doi:10.1016/S0733-5210(03)00024-9

    Article  Google Scholar 

  • Panozzo JF, Eckermann PJ, Mather DE, Moody DB, Black CK, Collins HM, Barr AR, Lim P, Cullis BR (2007) QTL analysis of malting quality traits in two barley populations. AJAR 58(9):858–866. doi:10.1071/AR06203

    Article  CAS  Google Scholar 

  • Pearson T, Wilson J, Gwirtz J, Maghirang E, Dowell F, McCluskey P, Bean S (2007) Relationship between single wheat kernel particle-size distribution and Perten SKCS 4100 hardness index. Cereal Chem 84(6):567–575

    Article  CAS  Google Scholar 

  • Psota V, Vejrazka K, Famera O, Hrcka M (2007) Relationship between grain hardness and malting quality of barley (Hordeum vulgare L.). J Inst Brew 113(1):80–86. doi:10.1002/j.2050-0416.2007.tb00260.x

    Article  CAS  Google Scholar 

  • Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R (2011) Intermedium-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene teosinte branched. Nat Genet 43(2):169–172. doi:10.1038/ng.745

    Article  PubMed  CAS  Google Scholar 

  • Swanston JS (1995) Effects on barley-grain size, texture and modification during malting associated with 3 genes on chromosome-1. J Cereal Sci 22(2):157–161. doi:10.1016/0733-5210(95)90045-4

    Article  Google Scholar 

  • Sýkorová A, Sarka E, Bubník Z, Schejba M, Dostálek P (2009) Size distribution of barley kernels. Czech J Food Sci 27(4):249–258

    Google Scholar 

  • Szűcs P, Karsai I, von Zitzewitz J, Mészáros K, Cooper L, Gu Y, Chen T, Hayes P, Skinner J (2006) Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. TAG 112(7):1277–1285. doi:10.1007/s00122-006-0229-y

    Article  PubMed  Google Scholar 

  • Szűcs P, Skinner J, Karsai I, Cuesta-Marcos A, Haggard K, Corey A, Chen T, Hayes P (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol Genet Genomics 277(3):249–261. doi:10.1007/s00438-006-0195-8

    Article  PubMed  Google Scholar 

  • Szűcs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2(2):134–140. doi:10.3835/plantgenome2008.01.0005

    Article  Google Scholar 

  • Takahashi A, Ikeda T, Takayama T, Yanagisawa T (2010) A barley hordoindoline mutation resulted in an increase in grain hardness. TAG 120(3):519–526. doi:10.1007/s00122-009-1172-5

    Article  PubMed  CAS  Google Scholar 

  • Thomas WTB, Powell W, Swanston JS, Ellis RP, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Waugh R, Smith DB (1996) Quantitative trait loci for germination and malting quality characters in a spring barley cross. Crop Sci 36(2):265–273. doi:10.2135/cropsci1996.0011183X003600020009x

    Article  Google Scholar 

  • Turuspekov Y, Beecher B, Darlington Y, Bowman J, Blake TK, Giroux MJ (2008) Hardness locus sequence variation and endosperm texture in spring barley. Crop Sci 48(3):1007–1019. doi:10.2135/cropsci2007.08.0424

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. doi:10.1093/jhered/93.1.77

    Article  PubMed  CAS  Google Scholar 

  • Walker CK, Panozzo JF (2011) Development of a small scale method to determine volume and density of individual barley kernels, and the relationship between grain density and endosperm hardness. J Cereal Sci 54(3):311–316. doi:10.1016/j.jcs.2011.06.008

    Article  Google Scholar 

  • Walker CK, Panozzo JF (2012) Measuring volume and density of a barley grain using ellipsoid approximation from a 2-D digital image. J Cereal Sci 55(1):61–68. doi:10.1016/j.jcs.2011.10.004

    Article  Google Scholar 

  • Walker CK, Panozzo J, Ford R, Moody D (2009) Measuring grain plumpness in barley using image analysis. In: Paper presented at the proceedings of the 14th Australian barley technical symposium, Sunshine Coast

  • Walker C, Panozzo J, Ford R, Eckermann P, Moody D, Lehmensiek A, Appels R (2011) Chromosomal loci associated with endosperm hardness in a malting barley cross. TAG 122(1):151–162. doi:10.1007/s00122-010-1431-5

    Article  PubMed  Google Scholar 

  • Wang L, Li G, Xia X, He Z, Mu P (2008) Molecular characterization of Pina and Pinb allelic variations in Xinjiang landraces and commercial wheat cultivars. Euphytica 164(3):745–752. doi:10.1007/s10681-008-9706-5

    Article  CAS  Google Scholar 

  • Williams PC, Norris K (2001) Near-infrared technology in the agricultural and food industries, 2nd edn. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  • Williams K, Munkvold J, Sorrells M (2012) Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica 1–18. doi:10.1007/s10681-012-0783-0

  • Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4:e1000212

    Article  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48(2):391–407. doi:10.2135/cropsci2007.04.0191

    Article  Google Scholar 

Download references

Acknowledgments

David Moody, InterGrain, for developing the ‘Vlamingh’ × ‘Buloke’ population, and providing advice throughout the research. The Grains and Forage Chemistry Laboratory, Department of Primary Industries, Horsham, for their assistance in processing grain samples. Grains Research and Development Corporation and Department of Primary Industries in funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra K. Walker.

Additional information

Communicated by R. Waugh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 138 kb)

Supplementary material 2 (XLSX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, C.K., Ford, R., Muñoz-Amatriaín, M. et al. The detection of QTLs in barley associated with endosperm hardness, grain density, grain size and malting quality using rapid phenotyping tools. Theor Appl Genet 126, 2533–2551 (2013). https://doi.org/10.1007/s00122-013-2153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2153-2

Keywords

Navigation