Skip to main content
Log in

High-resolution mapping of rachis nodes per rachis, a critical determinant of grain yield components in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Exploring large genomic data sets based on the latest reference genome assembly identifies the rice ortholog APO1 as a key candidate gene for number of rachis nodes per spike in wheat.

Abstract

Increasing grain yield in wheat is a key breeding objective worldwide. Several component traits contribute to grain yield with spike attributes being among the most important. In this study, we performed a genome-wide association analysis for 12 grain yield and component traits measured in field trials with contrasting agrochemical input levels in a panel of 220 hexaploid winter wheats. A highly significant, environmentally consistent QTL was detected for number of rachis nodes per rachis (NRN) on chromosome 7AL. The five most significant SNPs formed a strong linkage disequilibrium (LD) block and tagged a 2.23 Mb region. Using pairwise LD for exome SNPs located across this interval in a large worldwide hexaploid wheat collection, we reduced the genomic region for NRN to a 258 Kb interval containing four of the original SNP and six high-confidence genes. The ortholog of one (TraesCS7A01G481600) of these genes in rice was ABBERANT PANICLE ORGANIZATION1 (APO1), which is known to have significant effects on panicle attributes. The APO1 ortholog was the best candidate for NRN and was associated with a 115 bp promoter deletion and two amino acid (C47F and D384 N) changes. Using a large worldwide collection of tetraploid and hexaploid wheat, we found 12 haplotypes for the NRN QTL and evidence for positive enrichment of two haplotypes in modern germplasm. Comparison of five QTL haplotypes in Australian yield trials revealed their relative, context-dependent contribution to grain yield. Our study provides diagnostic SNPs and value propositions to support deployment of the NRN trait in wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745. https://doi.org/10.1126/science.1113373

    Article  CAS  PubMed  Google Scholar 

  • Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics (Oxford, England) 23(10):1294–1296. https://doi.org/10.1093/bioinformatics/btm108

    Article  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, Jean Finnegan E, Trevaskis B, Swain SM (2015) Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plants 1:14016. https://doi.org/10.1038/nplants.2014.16

    Article  CAS  PubMed  Google Scholar 

  • Boeven PHG, Longin CFH, Leiser WL, Kollers S, Ebmeyer E, Würschum T (2016) Genetic architecture of male floral traits required for hybrid wheat breeding. TAG Theor Appl Genet Theor und Angew Genet 129(12):2343–2357. https://doi.org/10.1007/s00122-016-2771-6

    Article  Google Scholar 

  • Brisson N, Gate P, Gouache D, Charmet G, Oury F-X, Huard F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res 119(1):201–212. https://doi.org/10.1016/j.fcr.2010.07.012

    Article  Google Scholar 

  • Edwards D, Wilcox S, Barrero RA, Fleury D, Cavanagh CR, Forrest KL, Hayden MJ, Moolhuijzen P, Keeble-Gagnère G, Bellgard MI, Lorenc MT, Shang CA, Baumann U, Taylor JM, Morell MK, Langridge P, Appels R, Fitzgerald A (2012) Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnol J 10(6):703–708. https://doi.org/10.1111/j.1467-7652.2012.00717.x

    Article  CAS  PubMed  Google Scholar 

  • Gauley A, Boden SA (2018) Genetic pathways controlling inflorescence architecture and development in wheat and barley. J Integr Plant Biol. https://doi.org/10.1111/jipb.12732

    Article  Google Scholar 

  • Grainger M (2010) World Summit on Food Security (UN FAO, Rome, 16–18 November 2009). Dev Pract 20(6):740–742. https://doi.org/10.1080/09614524.2010.491540

    Article  Google Scholar 

  • Hall AJ, Richards RA (2013) Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res 143:18–33. https://doi.org/10.1016/j.fcr.2012.05.014

    Article  Google Scholar 

  • Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. Appl Stat 28(1):100. https://doi.org/10.2307/2346830

    Article  Google Scholar 

  • He F, Pasam R, Shi F, Kant S, Keeble-Gagnere G, Kay P, Forrest F, Fritz A, Hucl P, Wiebe K, Knox R, Cuthbert R, Pozniak C, Akhunova A, Morrell P, Davies J, Webb S, Spangenberg S, Hayes B, Daetwyler H, Tibbits J, Hayden M, Akhunov E (2019) Exome sequencing highlights the role of wild relative introgression in shaping the adaptive landscape of the wheat genome. Nat Genet 51:896–904

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Miura K, Aya K, Kitano H, Matsuoka M (2013) Genes offering the potential for designing yield-related traits in rice. Curr Opin Plant Biol 16(2):213–220. https://doi.org/10.1016/j.pbi.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium IWGSC, Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J, Ronen G, Sharpe AG, Barad O, Baruch K, Keeble-Gagnère G, Mascher M, Ben-Zvi G, Josselin A-A, Himmelbach A, Balfourier F, Gutierrez-Gonzalez J, Hayden MJ, Koh C, Muehlbauer G, Pasam RK, Paux E, Rigault P, Tibbits J, Tiwari V, Spannagl M, Lang D, Gundlach H, Haberer G, Mayer KFX, Ormanbekova D, Prade V, Šimková H, Wicker T, Swarbreck D, Rimbert H, Felder M, Guilhot N, Kaithakottil G, Keilwagen J, Leroy P, Lux T, TwardziokS Venturini L, Juhász A, Abrouk M, Fischer I, Uauy C, Pl Borril, Ramirez-Gonzalez RH, Arnaud D, Chalabi S, Chalhoub B, Cory S, Datla R, Davey MW, Jacobs J, Robinson SJ, Steuernagel B, van Ex F, Wulff BBH, Benhamed M, Bendahmane A, Concia L, Latrasse D, Alaux M, Bartoš J, Bellec A, Berges H, Doležel J, Frenkel Z, Gill B, Korol A, Letellier T, Olsen O-A, Singh K, Valárik M, van der Vossen E, Vautrin S, Weining S, Chromosome LTC, Fahima T, Glikson V, Raats D, Číhalíková J, Toegelová H, Vrána J, Sourdille P, Darrier B, Barabaschi D, Cattivelli L, Hernandez P, Galvez S, Budak H, Jones JDG, Witek K, Yu G, Small I, Melonek J, Zhou R, Belova T, Kanyuka K, King R, Nilsen K, Walkowiak S, Cuthbert R, Knox R, Wiebe K, Xiang D, Rohde A, Golds T, Čížková J, Ani Akpinar B, Biyiklioglu S, Gao L, N’Daiye A, Kubaláková M, Šafář J, Alfama F, Adam-Blondon A-F, Flores R, Guerche C, Loaec M, Quesneville H, Condie J, Ens J, Maclachlan R, Tan Y, Alberti A, Aury J-M, Barbe V, Couloux A, Cruaud C, Labadie K, Mangenot S, Wincker P, Kaur G, Luo M, Sehgal S, Chhuneja P, Gupta OP, Jindal S, Kaur P, Malik P, Sharma P (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:661

    Google Scholar 

  • Joukhadar R, Daetwyler HD, Bansal UK, Gendall AR, Hayden MJ (2017) Genetic diversity, population structure and ancestral origin of Australian wheat. Front Plant Sci 8:2115

    Article  PubMed  PubMed Central  Google Scholar 

  • Keeble-Gagnère G, Rigault P, Tibbits J, Pasam R, Hayden M, Forrest K, Frenkel Z, Korol A, Huang BE, Cavanagh C, Taylor J, Abrouk M, Sharpe A, Konkin D, Sourdille P, Darrier B, Choulet F, Bernard A, Rochfort S, Dimech A, Watson-Haigh N, Baumann U, Eckermann P, Fleury D, Juhasz A, Boisvert S, Nolin M-A, Doležel J, Šimková H, Toegelová H, Šafář J, Luo M-C, Câmara F, Pfeifer M, Isdale D, Nyström-Persson J, Iwgsc Koo D-H, Tinning M, Cui D, Ru Z, Appels R (2018) Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome. Genome Biol 19(1):112. https://doi.org/10.1186/s13059-018-1475-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeble-Gagnère G, Isdale D, Suchecki R, Kruger A, Lomas K, Carroll D, Li S, Whan A, Hayden M, Tibbits J (2019) Integrating past, present and future wheat research with Pretzel. https://www.biorxiv.org/content/10.1101/517953v1; https://doi.org/10.1101/517953

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzay S, Yunfeng XuY, Zhang J, Katz A, Pearce S, Su Z, Fraser M, Anderson JA, Brown-Guedira G, DeWitt N, Peters A, Haugrud P, Faris JD, Akhunov E, Bai G, Dubcovsky J (2019) Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet. https://doi.org/10.1007/s00122-019-03382-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  • Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade V, Milner S, Himmelbach A, Mascher M, Bagnaresi P, Faccioli P, Cozzi P, Lauria M, Lazzari B, Stella A, Manconi A, Gnocchi M, Avni R, Deek J, Biyiklioglu S, Frascaroli E, Corneti S, Salvi S, Sonnante G, Desiderio F, Marè C, Crosatti C, Mica E, Ozkan H, Kilian B, De Vita P, Marone D, Joukhadar R, Mazzucotelli E, Nigro D, Gadaleta A, Chao S, Faris J, Melo ATO, Pumphrey M, Pecchioni N, Milanesi L, Wiebe K, Ens J, MacLachlan RP, Clarke JM, Sharpe AG, Koh K, Liang KYH, Taylor GJ, Knox R, Budak H, Mastrangelo AM, Xu SS, Stein N, Hale I, Distelfeld A, Hayden MJ, Tuberosa R, Walkowiak S, Mayer KFX, Ceriotti A, Pozniak CJ, Cattivelli L (2019) Durum wheat genome reveals past domestication signatures and future improvement targets. Nat Genet 51:885–895

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Ikeda M, Matsubara A, Song X-J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42(6):545–549. https://doi.org/10.1038/ng.592

    Article  CAS  PubMed  Google Scholar 

  • Muqaddasi QH, Brassac J, Börner A, Pillen K, Röder MS (2017) Genetic architecture of anther extrusion in spring and winter wheat. Front. Plant Sci. 8:754. https://doi.org/10.3389/fpls.2017.00754

    Article  PubMed  PubMed Central  Google Scholar 

  • Quarrie SA, Pekic-Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293. https://doi.org/10.1038/ncomms2296

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Jin S, Lu Y, Zhang G, Chao S, Bai G (2016) Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol Breed 36(2):343. https://doi.org/10.1007/s11032-016-0436-4

    Article  CAS  Google Scholar 

  • Templetion AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data III. Cladogram Estim Genet 132:619–633

    Google Scholar 

  • Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436(7054):1119–1126. https://doi.org/10.1038/nature03892

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M-C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796. https://doi.org/10.1111/pbi.12183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S-X, Zhu Y-L, Zhang D-X, Shao H, Liu P, Hu J-B, Zhang H, Zhang H-P, Chang C, Lu J, Xia X-C, Sun G-L, Ma C-X (2017) Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS ONE 12(11):e0188662. https://doi.org/10.1371/journal.pone.0188662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward BP, Brown-Guedira G, Kolb FL, Van Sanford DA, Tyagi P, Sneller CH et al (2019) Genome-wide association studies for yield-related traits in soft red winter wheat grown in Virginia. PLoS ONE 14(2):e0208217. https://doi.org/10.1371/journal.pone.0208217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson-Haigh NS, Suchecki R, Kalashyan E, Garcia M, Baumann U (2018) DAWN: a resource for yielding insights into the diversity among wheat genomes. BMC Genom 19:941. https://doi.org/10.1186/s12864-018-5228-2

    Article  CAS  Google Scholar 

  • Winfield MO, Wilkinson PA, Allen AM, Barker GLA, Coghill JA, Burridge A (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol J 10:733–742

    Article  CAS  PubMed  Google Scholar 

  • Würschum T, Leiser WL, Langer SM, Tucker MR, Longin CFH (2018) Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. TAG Theor Appl Genet Theor und Angew Genet 131(10):2071–2084. https://doi.org/10.1007/s00122-018-3133-3

    Article  CAS  Google Scholar 

  • Zhang JL, Gizaw SA, Bossolini E, Hegarty J, Howell T, Carter AH, Akhunov E, Dubcovsky J (2018) Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall sown spring wheats. Theor Appl Genet 131:1741–1759

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for the genome-wide association study was provided by the German Federal Ministry of Education and Research (BMBF, Grant 031A354) within the Project Breeding Innovations in Wheat for Efficient Cropping Systems (BRIWECS). The authors acknowledge the valuable comments made by Professor Jorge Dubcovsky on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rudi Appels or Benjamin Wittkop.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Peter Langridge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3294 kb)

Supplementary material 2 (XLSX 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss-Fels, K.P., Keeble-Gagnère, G., Hickey, L.T. et al. High-resolution mapping of rachis nodes per rachis, a critical determinant of grain yield components in wheat. Theor Appl Genet 132, 2707–2719 (2019). https://doi.org/10.1007/s00122-019-03383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03383-4

Navigation