Skip to main content
Log in

Mapping Solanum chacoense mediated Colorado potato beetle (Leptinotarsa decemlineata) resistance in a self-compatible F2 diploid population

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A major QTL on chromosome 2 associated with leptine biosynthesis and Colorado potato beetle resistance was identified in a diploid S. chacoense F2 population using linkage mapping and bulk-segregant analysis.

Abstract

We examined the genetic features underlying leptine glycoalkaloid mediated Colorado potato beetle (Leptinotarsa decemlineata) host plant resistance in a diploid F2 mapping population of 233 individuals derived from Solanum chacoense lines USDA8380-1 and M6. The presence of foliar leptine glycoalkaloids in this population segregated as a single dominant gene and displayed continuous distribution of accumulated quantity in those individuals producing the compound. Using biparental linkage mapping, a major overlapping QTL region with partial dominance effects was identified on chromosome 2 explaining 49.3% and 34.1% of the variance in Colorado potato beetle field resistance and leptine accumulation, respectively. Association of this putative resistance region on chromosome 2 was further studied in an expanded F2 population in a subsequent field season. Loci significantly associated with leptine synthesis colocalized to chromosome 2. Significant correlation between increased leptine content and decreased Colorado potato beetle defoliation suggests a single QTL on chromosome 2. Additionally, a minor QTL with overdominance effects explaining 6.2% associated with Colorado potato beetle resistance donated by susceptible parent M6 was identified on chromosome 7. Bulk segregant whole genome sequencing of the same F2 population detected QTL associated with Colorado potato beetle resistance on chromosomes 2, 4, 6, 7, and 12. Weighted gene co-expression network analysis of parental lines and resistant and susceptible F2 individuals identified a tetratricopeptide repeat containing protein with a putative regulatory function and a previously uncharacterized acetyltransferase within the QTL region on chromosome 2, possibly under the control of a regulatory Tap46 subunit within the minor QTL on chromosome 12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agelopoulos N, Chamberlain K, Pickett J (2000) Factors affecting volatile emissions of intact potato plants, Solanum tuberosum: variability of quantities and stability of ratios. J Chem Ecol 26:497–511

    CAS  Google Scholar 

  • Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Grafius E (2008) Colorado potato beetle resistance to insecticides. Am J Potato Res 85:395–413. https://doi.org/10.1007/s12230-008-9052-0

    Article  Google Scholar 

  • Alyokhin A, Vincent C, Giordanengo P (2012) Insect pests of potato: global perspectives on biology and management. Academic Press, New York, p 634

    Google Scholar 

  • APRD (2019) Arthropod pesticide resistance database. https://www.pesticideresistance.org. Accessed 29 Oct 2019

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  • Blatch GL, Lässle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21:932–939

    CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolter CJ, Dicke M, Van Loon JJ, Visser J, Posthumus MA (1997) Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J Chem Ecol 23:1003–1023

    CAS  Google Scholar 

  • Boluarte-Medina T, Fogelman E, Chani E, Miller AR, Levin I, Levy D, Veilleux RE (2002) Identification of molecular markers associated with leptine in reciprocal backcross families of diploid potato. Theor Appl Genet 105:1010–1018. https://doi.org/10.1007/s00122-002-1020-3

    Article  CAS  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) Rflp maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cárdenas PD, Sonawane PD, Heinig U, Jozwiak A, Panda S, Abebie B, Kazachkova Y, Pliner M, Unger T, Wolf D (2019) Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat Commun 10:1–13

    Google Scholar 

  • Coombs JJ, Douches DS, Li W, Grafius EJ, Pett WL (2003) Field evaluation of natural, engineered, and combined resistance mechanisms in potato for control of Colorado potato beetle. J Am Soc Hortic Sci 128:219–224

    Google Scholar 

  • Crossley MS, Schoville SD, Haagenson DM, Jansky SH (2018) Plant resistance to Colorado potato beetle (Coleoptera: Chrysomelidae) in diploid f2 families derived from crosses between cultivated and wild potato. J Econ Entomol 111:1875–1884. https://doi.org/10.1093/jee/toy120

    Article  PubMed  Google Scholar 

  • De Wilde J, Bongers W, Schooneveld AH (1969) Effects of hostplant age on phytophagous insects. Entomol Exp Appl 12:714–720

    Google Scholar 

  • Deahl K, Cantelo W, Sinden S, Sanford L (1991) The effect of light intensity on Colorado potato beetle resistance and foliar glycoalkaloid concentration of four Solanum chacoense clones. Am Potato J 68:659–666

    CAS  Google Scholar 

  • Depristo MA, Banks E, Poplin RE, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M, Mckenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next- generation DNA sequencing data. Nat Genet 43:491–498. https://doi.org/10.1038/ng.806.A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickens JC (2002) Behavioural responses of larvae of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), to host plant volatile blends attractive to adults. Agric For Entomol 4:309–314

    Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) Star: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    CAS  PubMed  Google Scholar 

  • Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, Buell CR, Zarka D, Douches DS (2019) Overcoming self-incompatibility in diploid potato using CRISPR-Cas9. Front Plant Sci 10:376

    PubMed  PubMed Central  Google Scholar 

  • Felcher KJ, Coombs JJ, Massa AN, Hansey CN, Hamilton JP, Veilleux RE, Buell CR, Douches DS (2012) Integration of two diploid potato linkage maps with the potato genome sequence. PLoS One 7:e36347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman M, Mcdonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132. https://doi.org/10.1080/07352689709701946

    Article  CAS  Google Scholar 

  • Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschabel U, Kaufmann H, Thompson R, Bonierbale M, Ganal M (1991) RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83:49–57

    CAS  PubMed  Google Scholar 

  • Ginzberg I, Tokuhisa JG, Veilleux RE, Ginzberg I, Tokuhisa JG, Veilleux RE (2009) Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. Potato Res 52:1–15. https://doi.org/10.1007/s11540-008-9103-4

    Article  CAS  Google Scholar 

  • Grafius EJ, Douches DS (2008) The present and future role of insect-resistant genetically modified potato cultivars in IPM. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 195–221

    Google Scholar 

  • Hamilton JP, Hansey CN, Whitty BR, Stoffel K, Massa AN, Van Deynze A, De Jong WS, Douches DS, Buell CR (2011) Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genom 12:302. https://doi.org/10.1186/1471-2164-12-302

    Article  CAS  Google Scholar 

  • Hare JD (1980) Impact of defoliation by the Colorado potato beetle on potato yields. J Econ Entomol 73:369–373. https://doi.org/10.1093/jee/73.3.369

    Article  Google Scholar 

  • Hirsch CD, Hamilton JP, Childs KL (2014) Spud DB: a resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. The Plant Genome 7:1–12. https://doi.org/10.3835/plantgenome2013.12.0042

    Article  CAS  Google Scholar 

  • Hollister B, Dickens JC, Perez F, Deahl KL (2001) Differential neurosensory responses of adult Colorado potato beetle, Leptinotarsa decemlineata, to glycoalkaloids. J Chem Ecol 27:1105–1118

    CAS  PubMed  Google Scholar 

  • Hosaka K, Hanneman RE (1998) Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers. Euphytica 103:265–271

    CAS  Google Scholar 

  • Hosaka K, Hanneman J, Robert E (1998) Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an s locus inhibitor (sli) gene. Euphytica 99:191–197. https://doi.org/10.1023/a:1018353613431

    Article  Google Scholar 

  • Hufnagel M, Schilmiller AL, Ali J, Szendrei Z (2017) Choosy mothers pick challenging plants: maternal preference and larval performance of a specialist herbivore are not linked. Ecol Entomol 42:33–41

    Google Scholar 

  • Hutvágner G, Bánfalvi Z, Milánkovics I, Silhavy D, Polgár Z, Horváth S, Wolters P, Nap JP (2001) Molecular markers associated with leptinine production are located on chromosome 1 in Solanum chacoense. Theor Appl Genet 102:1065–1071. https://doi.org/10.1007/s001220000450

    Article  Google Scholar 

  • Ioannidis P, Grafius E, Whalon M (1991) Patterns of insecticide resistance to azinphosmethyl, carbofuran, and permethrin in the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 84:1417–1423

    CAS  Google Scholar 

  • Ioannidis PM, Grafius EJ, Wierenga JM, Whalon ME, Hollingworth RM (1992) Selection, inheritance and characterization of carbofuran resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae). Pestic Sci 35:215–222. https://doi.org/10.1002/ps.2780350304

    Article  CAS  Google Scholar 

  • Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri AP, Aharoni A (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341:175–179. https://doi.org/10.1126/science.1240230

    Article  CAS  PubMed  Google Scholar 

  • Izzo VM, Chen YH, Schoville SD, Wang C, Hawthorne DJ (2018) Origin of pest lineages of the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 111:868–878

    CAS  PubMed  Google Scholar 

  • Jacobs J, Van Eck H, Arens P, Verkerk-Bakker B, Te Lintel Hekkert B, Bastiaanssen H, El-Kharbotly A, Pereira A, Jacobsen E, Stiekema W (1995) A genetic map of potato (Solanum tuberosum) integrating molecular markers, including transposons, and classical markers. Theor Appl Genet 91:289–300

    CAS  PubMed  Google Scholar 

  • Jansky SH, Chung YS, Kittipadukal P (2014) M6: a diploid potato inbred line for use in breeding and genetics research. J Plant Regist 8:195. https://doi.org/10.3198/jpr2013.05.0024crg

    Article  Google Scholar 

  • Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Data mining in proteomics, pp 291–303

  • Kreike C, Stiekema W (1997) Reduced recombination and distorted segregation in a Solanum tuberosum (2 ×) × S. spegazzinii (2 ×) hybrid. Genome 40:180–187

    CAS  PubMed  Google Scholar 

  • Kumar A, Fogelman E, Weissberg M, Tanami Z, Veilleux R, Ginzberg I (2017) Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato. Planta 246:1189–1202

    CAS  PubMed  Google Scholar 

  • Lachman J, Hamouz K, Orsák M, Pivec V (2001) Potato glycoalkaloids and their significance in plant protection and human nutrition-review. Rostlinna Vyroba UZPI 47:181–191

    CAS  Google Scholar 

  • Landolt PJ, Tumlinson J, Alborn D (1999) Attraction of Colorado potato beetle (Coleoptera: Chrysomelidae) to damaged and chemically induced potato plants. Environ Entomol 28:973–978

    Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Google Scholar 

  • Larson S, Csiro C (1988) Leaf age and larval performance of the leaf beetle Paropsis atomaria. Ecol Entomol 13:19–24

    Google Scholar 

  • Lawson DR, Veilleux RE, Miller AR (1993) Biochemistry and genetics of Solanum chacoense steroidal alkaloids: natural resistance factors to the Colorado potato beetle. Curr Top Bot Res 1(33335):33352

    Google Scholar 

  • Leisner CP, Hamilton JP, Crisovan E, Manrique-Carpintero NC, Marand AP, Newton L, Pham GM, Jiang J, Douches DS, Jansky SH, Buell CR (2018) Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species solanum chacoense, reveals residual heterozygosity. Plant J 94:562–570. https://doi.org/10.1111/tpj.13857

  • Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-mem. arXiv 00:1-3. arXiv:1303.3997 [q-bio.GN]

  • Liao Y, Smyth GK, Shi W (2013) Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    PubMed  Google Scholar 

  • Lorenzen JH, Balbyshev NF, Lafta AM, Casper H, Tian X, Sagredo B (2001) Resistant potato, selections contain leptine and inhibit development of the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 94:1260–1267. https://doi.org/10.1603/0022-0493-94.5.1260

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7:e1002255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manrique-Carpintero NC, Tokuhisa JG, Ginzberg I, Veilleux RE (2014) Allelic variation in genes contributing to glycoalkaloid biosynthesis in a diploid interspecific population of potato. Theor Appl Genet 127:391–405

    CAS  PubMed  Google Scholar 

  • Manrique-Carpintero NC, Coombs JJ, Veilleux RE, Buell CR, Douches DS (2016) Comparative analysis of regions with distorted segregation in three diploid populations of potato. G3: genes. Genom Genet 6:2617–2628

    Google Scholar 

  • Mansfeld BN, Grumet R (2018) Qtlseqr: an R package for bulk segregant analysis with next-generation sequencing. bioRxiv:208140. https://doi.org/10.1101/208140

  • Martel J, Alford A, Dickens J (2007) Evaluation of a novel host plant volatile-based attracticide for management of Colorado potato beetle, Leptinotarsa decemlineata (Say). Crop Prot 26:822–827

    CAS  Google Scholar 

  • Mccue KF, Shepherd LVT, Allen PV, Maccree MM, Rockhold DR, Corsini DL, Davies HV, Belknap WR (2005) Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Sci 168:267–273. https://doi.org/10.1016/j.plantsci.2004.08.006

    Article  CAS  Google Scholar 

  • Mccue KF, Allen PV, Shepherd LVT, Blake A, Malendia Maccree M, Rockhold DR, Novy RG, Stewart D, Davies HV, Belknap WR (2007) Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68:327–334. https://doi.org/10.1016/j.phytochem.2006.10.025

    Article  CAS  PubMed  Google Scholar 

  • Mitchell B, Low R (1994) The structure of feeding behavior in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). J Insect Behav 7:707

    Google Scholar 

  • Moehs CP, Allen PV, Friedman M, Belknap WR (1997) Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11:227–236

    CAS  PubMed  Google Scholar 

  • Mondy NI, Gosselin B (1988) Effect of peeling on total phenols, total glycoalkaloids, discoloration and flavor of cooked potatoes. J Food Sci 53:756–759

    CAS  Google Scholar 

  • Mondy NI, Munshi CB (1990) Effect of nitrogen fertilization on glycoalkaloid and nitrate content of potatoes. J Agric Food Chem 38:565–567

    CAS  Google Scholar 

  • Mondy NI, Leja M, Gosselin B (1987) Changes in total phenolic, total glycoalkaloid, and ascorbic acid content of potatoes as a result of bruising. J Food Sci 52:631–634

    CAS  Google Scholar 

  • Morris SC, Petermann JB (1985) Genetic and environmental effects on levels of glycoalkaloids in cultivars of potato (Solanum tuberosum L.). Food Chem 18:271–282

    CAS  Google Scholar 

  • Mota-Sanchez D, Hollingworth RM, Grafius EJ, Moyer DD (2006) Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Pest Manag Sci 62:30–37. https://doi.org/10.1002/ps.1120

    Article  CAS  PubMed  Google Scholar 

  • Moyle LC, Graham E (2006) Genome-wide associations between hybrid sterility QTL and marker transmission ratio distortion. Mol Biol Evol 23:973–980

    CAS  PubMed  Google Scholar 

  • Mweetwa AM, Hunter D, Poe R, Harich KC, Ginzberg I, Veilleux RE, Tokuhisa JG (2012) Steroidal glycoalkaloids in Solanum chacoense. Phytochemistry 75:32–40. https://doi.org/10.1016/j.phytochem.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  • Noronha C, Cloutier C (2006) Effects of potato foliage age and temperature regime on prediapause Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Environ Entomol 35:590–599

    Google Scholar 

  • Osman S, Sinden SL, Deahl K, Moreau R (1987) The metabolism of solanidine by microsomal fractions from Solanum chacoense. Phytochemistry 26:3163–3165. https://doi.org/10.1016/S0031-9422(00)82462-0

    Article  CAS  Google Scholar 

  • PGSC (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195. https://doi.org/10.1038/nature10158

    Article  CAS  Google Scholar 

  • Pijnacker L, Ferwerda M (1984) Giemsa C-banding of potato chromosomes. Can J Genet Cytol 26:415–419

    Google Scholar 

  • Rangarajan A, Miller AR, Veilleux RE (2000) Leptine glycoalkaloids reduce feeding by Colorado potato beetle in diploid Solanum sp. hybrids. J Am Soc Hortic Sci 125:689–693

    CAS  Google Scholar 

  • Raupp MJ (1985) Effects of leaf toughness on mandibular wear of the leaf beetle, Plagiodera versicolora. Ecol Entomol 10:73–79

    Google Scholar 

  • Riley CV (1871) Third annual report on the noxious, beneficial and other insects, of the state of missouri. Public Printer, Jefferson City

    Google Scholar 

  • Rivard SR, Cappadocia M, Landry BS (1996) A comparison of RFLP maps based on anther culture derived, selfed, and hybrid progenies of Solanum chacoense. Genome 39:611–621

    CAS  PubMed  Google Scholar 

  • Ronning CM, Sanford LL, Kobayashi RS, Kowalsld SP (1998) Foliar leptine production in segregating F1, inter-F1, and backcross families of Solanum chacoense Bitter. Am J Potato Res 75:137–143

    CAS  Google Scholar 

  • Ronning CM, Stommel JR, Kowalski SP, Sanford LL, Kobayashi RS, Pineada O (1999) Identification of molecular markers associated with leptine production in a population of Solanum chacoense Bitter. Theor Appl Genet 98:39–46. https://doi.org/10.1007/s001220051037

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the www for general users and for biologist programmers. Bioinformatics methods and protocols. Springer, pp 365–386

  • Sagredo B, Lafta A, Casper H, Lorenzen J (2006) Mapping of genes associated with leptine content of tetraploid potato. Theor Appl Genet 114:131–142. https://doi.org/10.1007/s00122-006-0416-x

    Article  CAS  PubMed  Google Scholar 

  • Sagredo B, Balbyshev N, Lafta A, Casper H, Lorenzen J (2009) A QTL that confers resistance to Colorado potato beetle (Leptinotarsa decemlineata [Say]) in tetraploid potato populations segregating for leptine. Theor Appl Genet 119:1171–1181. https://doi.org/10.1007/s00122-009-1118-y

    Article  PubMed  Google Scholar 

  • Sanford LL, Kobayashi RS, Deahl KL, Sinden SL (1996) Segregation of leptines and other glycoalkaloids in Solanum tuberosum (4 ×) × S. chacoense (4 ×) crosses. Am Potato J 73:21

    CAS  Google Scholar 

  • Sanford LL, Kobayashi RS, Deahl KL, Sinden SL (1997) Diploid and tetraploid Solanum chacoense genotypes that synthesize leptine glycoalkaloids and deter feeding by Colorado potato beetle. Am Potato J 74:15–21

    CAS  Google Scholar 

  • Schapire AL, Valpuesta V, Botella MA (2006) Tpr proteins in plant hormone signaling. Plant Signal Behav 1:229–230

    PubMed  PubMed Central  Google Scholar 

  • Shaner G, Finney R (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheat. Phytopathology 67:1051–1056

    CAS  Google Scholar 

  • Sharma SK, Bolser D, De Boer J, Sønderkær M, Amoros W, Carboni MF, D’ambrosio JM, De La Cruz G, Di Genova A, Douches DS (2013) Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3: Genes. Genom Genet 3:2031–2047

    Google Scholar 

  • Silhavy D, Szentesi A, Bánfalvi Z (1996) Solanum chacoense lines with different alkaloid contents-a potential source of genes involved in leptine synthesis. Acta Agron Hung 44:113–120

    CAS  Google Scholar 

  • Sinden SL, Webb RE (1972) Effect of variety and location on the glycoalkaloid content of potatoes. Am Potato J 49:334–338

    CAS  Google Scholar 

  • Sinden SL, Sanford LL, Osman SF (1980) Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense Bitter. Am Potato J 57:331–343. https://doi.org/10.1007/BF02854028

    Article  CAS  Google Scholar 

  • Sinden SL, Sanford LL, Webb RE (1984) Genetic and environmental control of potato glycoalkaloids. Am Potato J 61:141–156

    CAS  Google Scholar 

  • Sinden SL, Sanford LL, Cantelo WW, Deahl KL (1986) Leptine glycoalkaloids and resistance to the Colorado potato beetle (Coleoptera: Chrysomelidae) in Solanum chacoense. Environ Entomol 15:1057–1062

    CAS  Google Scholar 

  • Slanina P (1990) Solanine (glycoalkaloids) in potatoes: toxicological evaluation. Food Chem Toxicol 28:759–761

    CAS  PubMed  Google Scholar 

  • Stürekow B, Löw I (1961) Die wirkung einger Solanum alkaloidglykoside auf den kartoffelkafer Leptinotarsa decemlineata. Entomol Exp Appl 4:133–142

    Google Scholar 

  • Szafranek BM, Synak EE (2006) Cuticular waxes from potato (Solanum tuberosum) leaves. Phytochemistry 67:80–90

    CAS  PubMed  Google Scholar 

  • Szafranek B, Chrapkowska K, Waligóra D, Palavinskas R, Banach A, Szafranek J (2006) Leaf surface sesquiterpene alcohols of the potato (Solanum tuberosum) and their influence on Colorado beetle (Leptinotarsa decemlineata Say) feeding. J Agric Food Chem 54:7729–7734

    CAS  PubMed  Google Scholar 

  • Szafranek B, Synak E, Waligóra D, Szafranek J, Nawrot J (2008) Leaf surface compounds of the potato (Solanum tuberosum) and their influence on Colorado potato beetle (Leptinotarsa decemlineata) feeding. Chemoecology 18:205–216

    CAS  Google Scholar 

  • Szendrei Z (2014) Colorado potato beetle management in potatoes. Michigan State University Extension. https://www.canr.msu.edu/news/colorado_potato_beetle_management_in_potatoes. Accessed 1 July 2020

  • Tanton M (1962) The effect of leaf “toughness” on the feeding of larvae of the mustard beetle Phaedon cochleariae Fab. Entomol Exp Appl 5:74–78

    Google Scholar 

  • Tingey WM (1984) Glycoalkaloids as pest resistance factors. Am Potato J 61:157–167. https://doi.org/10.1007/BF02854036

    Article  CAS  Google Scholar 

  • Van Gelder WM, Dellaert LMW (1988) Alkaloids in potatoes. Prophyta 42:236–238

    Google Scholar 

  • Van Ooijen J (2006) Joinmap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

  • Van Ooijen J., Kyazma B. (2009) Mapqtl 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen, Netherlands

  • Veilleux RE, Miller AR (1998) Hybrid breakdown in the F1 between Solanum chacoense and S. phureja and gene transfer for leptine biosynthesis. J Am Soc Hortic Sci 123:854–858

    CAS  Google Scholar 

  • Visser J, Van Straten S, Maarse H (1979) Isolation and identification of volatiles in the foliage of potato, Solanum tuberosum, a host plant of the Colorado beetle, Leptinotarsa decemlineata. J Chem Ecol 5:13–25

    CAS  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. https://doi.org/10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • Vos PG, Uitdewilligen JGAML, Voorrips RE, Visser RGF, Van Eck HJ (2015) Development and analysis of a 20 k SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet. https://doi.org/10.1007/s00122-015-2593-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Vreugdenhil D, Bradshaw J, Gehardt C, Govers F, Mackerron DKL, Taylor M, Ross H (2007) Potato biology and biotechnology: advances and perspectives 91–111

  • Whalon ME, Mota-Sanchez D, Hollingworth RM (2008) Analysis of global pesticide resistance in arthropods. Global pesticide resistance in arthropods. CABI, Wallingford, pp 5–31

    Google Scholar 

  • Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S (2018) Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants 4:651–654

    CAS  PubMed  Google Scholar 

  • Yencho GC, Kowalski SP, Kennedy GG, Sanford LL (2000) Segregation of leptine glycoalkaloids and resistance to Colorado potato beetle (Leptinotarsa decemlineata (Say)) in F2 Solanum tuberosum (4 ×) × S. chacoense (4 ×) potato progenies. Am J Potato Res 77:167–178

    CAS  Google Scholar 

  • Zhang C, Wang P, Tang D, Yang Z, Lu F, Qi J, Tawari NR, Shang Y, Li C, Huang S (2019) The genetic basis of inbreeding depression in potato. Nat Genet 51:374–378

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Robin Buell and Gina Pham for advice on sequencing and bioinformatic analyses. We would also like to thank Anthony Schilmiller, Assistant Core Manager of the Michigan State University Mass Spectrometry and Metabolomics Core facility, for guidance on methods and Grant Billings for his technical assistance conducting Colorado potato beetle bioassays, extracting metabolite and DNA samples, and providing plant maintenance in the greenhouse.

Funding

This project was supported by Michigan State University AgBioResearch Project GREEEN (Generating Research and Extension to meet Economic and Environmental Needs) (Grant No. GR17-014) funding.

Author information

Authors and Affiliations

Authors

Contributions

NRK and DD conceived of this study and contributed to funding acquisition. NRK, CD, DD, NCMC, and JC designed the research. NRK executed the experiments. NRK and NCMC defined linkage mapping protocols. NRK, CD. and JC defined insect assay experimental design and protocols. NRK defined genomic analysis pipelines. NRK analyzed the data with input from all authors. NRK and NCMC wrote the manuscript with contributions from all coauthors.

Corresponding author

Correspondence to Natalie Kaiser.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jeffrey Endelman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, N., Manrique-Carpintero, N.C., DiFonzo, C. et al. Mapping Solanum chacoense mediated Colorado potato beetle (Leptinotarsa decemlineata) resistance in a self-compatible F2 diploid population. Theor Appl Genet 133, 2583–2603 (2020). https://doi.org/10.1007/s00122-020-03619-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03619-8

Navigation