Skip to main content
Log in

Genome-wide association reveals a complex architecture for rust resistance in 2300 worldwide bread wheat accessions screened under various Australian conditions

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We utilized 2300 wheat accessions including worldwide landraces, cultivars and primary synthetic-derived germplasm with three Australian cultivars: Annuello, Yitpi and Correll, to investigate field-based resistance to leaf (Lr) rust, stem (Sr) rust and stripe (Yr) rust diseases across a range of Australian wheat agri-production zones. Generally, the resistance in the modern Australian cultivars, synthetic derivatives, South and North American materials outperformed other geographical subpopulations. Different environments for each trait showed significant correlations, with average r values of 0.53, 0.23 and 0.66 for Lr, Sr and Yr, respectively. Single-trait genome-wide association studies (GWAS) revealed several environment-specific and multi-environment quantitative trait loci (QTL). Multi-trait GWAS confirmed a cluster of Yr QTL on chromosome 3B within a 4.4-cM region. Linkage disequilibrium and comparative mapping showed that at least three Yr QTL exist within the 3B cluster including the durable rust resistance gene Yr30. An Sr/Lr QTL on chromosome 3D was found mainly in the synthetic-derived germplasm from Annuello background which is known to carry the Agropyron elongatum 3D translocation involving the Sr24/Lr24 resistance locus. Interestingly, estimating the SNP effects using a BayesR method showed that the correlation among the highest 1% of QTL effects across environments (excluding GWAS QTL) had significant correlations, with average r values of 0.26, 0.16 and 0.55 for Lr, Sr and Yr, respectively. These results indicate the importance of small effect QTL in achieving durable rust resistance which can be captured using genomic selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ash GJ, Brown JF (1990) Yield losses in wheat caused by stripe rust (Puccinia striiformis West.) in northern New South Wales. Aust J Exp Agric 30(1):103–108

    Google Scholar 

  • Atkinson J (1826) An account of agriculture and grazing in New South Wales. London. (cited from Park R (2007))

  • Babiker EM, Gordon TC, ChaoS NM, Rouse MN, Jin Y et al (2015) Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theor Appl Genet 128(4):605–612

    CAS  PubMed  Google Scholar 

  • Bansal UK, Hayden MJ, Gill MB, Bariana HS (2010) Chromosomal location of an uncharacterised stripe rust resistance gene in wheat. Euphytica 171(1):121–127

    Google Scholar 

  • Bariana HS, Bansal UK, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre CL (2010) Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176:251–260

    CAS  Google Scholar 

  • Bariana H, Forrest K, Qureshi N, Miah H, Hayden M, Bansal U (2016) Adult plant stripe rust resistance gene Yr71 maps close to Lr24 in chromosome 3D of common wheat. Mol Breed 36(7):98

    Google Scholar 

  • Beavis W (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162

    Google Scholar 

  • Bipinraj A, Honrao B, Prashar M, Bhardwaj S, Rao S, Tamhankar S (2011) Validation and identification of molecular markers linked to the leaf rust resistance gene Lr28 in wheat. J Appl Genet 52(2):171–175

    CAS  PubMed  Google Scholar 

  • Bulli P, Zhang J, Chao S, Chen X, Pumphrey M (2016) Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3 Genes Genomes Genet 6(8):2237–2253

    CAS  Google Scholar 

  • Chhetri M (2015) Molecular mapping and genetic characterization of rust resistance in wheat. Ph.D. thesis the University of Sydney, Australia

  • Chhetri M, Bariana H, Kandiah P, Bansal U (2016) Yr58: a new stripe rust resistance gene and its interaction with Yr46 for enhanced resistance. Phytopathology 106(12):1530–1534

    CAS  PubMed  Google Scholar 

  • Chhetri M, Bariana H, Wong D, Sohail Y, Hayden M, Bansal U (2017) Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Mol Breed 37(3):21

    Google Scholar 

  • Clayton D (2015) snpStats: SnpMatrix and XSnpMatrix classes and methods. R package version 1.20.0

  • Daetwyler HD, Bansal UK, Bariana HS, Hayden MJ, Hayes BJ (2014) Genomic prediction for rust resistance in diverse wheat landraces. Theor Appl Genet 127(8):1795–1803

    CAS  PubMed  Google Scholar 

  • Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich CM et al (2012) Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J Dairy Sci 95(7):4114–4129

    CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54(1):357–374

    CAS  PubMed  Google Scholar 

  • Gao L, Turner MK, Chao S, Kolmer J, Anderson JA (2016) Genome wide association study of seedling and adult plant leaf rust resistance in elite spring wheat breeding lines. PLoS ONE 11(2):e0148671

    PubMed  PubMed Central  Google Scholar 

  • Gao L, Rouse MN, Mihalyov PD, Bulli P, Pumphrey MO, Anderson JA (2017) Genetic characterization of stem rust resistance in a global spring wheat germplasm collection. Crop Sci 57(5):2575–2589

    CAS  Google Scholar 

  • Gao L, Babiker EM, Nava IC, Nirmala J, Bedo Z, Lang L et al (2019) Temperature-sensitive wheat stem rust resistance gene Sr15 is effective against Puccinia graminis f. sp. tritici race TTKSK. Plant Pathol 68(1):143–151

    CAS  Google Scholar 

  • Gupta SK, Charpe A, Prabhu KV, Haque QMR (2006) Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor Appl Genet 113(6):1027–1036

    CAS  PubMed  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177(4):2389–2397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haile JK, Nachit MM, Hammer K, Badebo A, Roder MS (2012) QTL mapping of resistance to race Ug99 of Puccinia graminis f. sp. tritici in durum wheat (Triticum durum Desf.). Mol Breed 30:1479–1493

    Google Scholar 

  • Henzell T (2007) Australian agriculture: its history and challenges. CSIRO Publishing, Clayton

    Google Scholar 

  • Hiebert CW, Fetch TG, Zegeye T (2010) Genetics and mapping of stem rust resistance to Ug99 in the wheat cultivar Webster. Theor Appl Genet 121:65–69

    PubMed  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    CAS  PubMed  Google Scholar 

  • Jighly A, Oyiga BC, Makdis F, Nazari K, Youssef O, Tadesse W, Abdalla O, Ogbonnaya FC (2015) Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. Theor Appl Genet 128:1277–1295

    CAS  PubMed  Google Scholar 

  • Jighly A, Alagu M, Makdis F, Singh M, Singh S, Emebiri LC, Ogbonnaya FC (2016) Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol Breed 36:127

    Google Scholar 

  • Jighly A, Joukhadar R, Singh S, Ogbonnaya FC (2018) Decomposing additive genetic variance revealed novel insights into trait evolution in synthetic hexaploid wheat. Front Genet 9:27

    PubMed  PubMed Central  Google Scholar 

  • Joukhadar R, El-Bouhssini M, Jighly A, Ogbonnaya FC (2013) Genomic regions associated with resistance to five major pests in wheat. Mol Breed 32:943–960

    CAS  Google Scholar 

  • Joukhadar R, Daetwyler HD, Bansal U, Gendall A, Hayden M (2017) Genetic diversity, population structure and ancestral origin of Australian wheat. Front Plant Sci 8:2115

    PubMed  PubMed Central  Google Scholar 

  • Kankwatsa P, Singh D, Thomson PC, Babiker EM, Bonman JM, Newcomb M, Park RF (2017) Characterization and genome-wide association mapping of resistance to leaf rust, stem rust and stripe rust in a geographically diverse collection of spring wheat landraces. Mol Breed 37(9):113

    Google Scholar 

  • Kertho A, Mamidi S, Bonman JM, McClean PE, Acevedo M (2015) Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PLoS ONE 10(6):e0129580

    PubMed  PubMed Central  Google Scholar 

  • Kolmer JA, Chao S, Brown-Guedira G, Bansal U, Bariana H (2018) Adult plant leaf rust resistance derived from the soft red winter wheat cultivar ‘Caldwell’ maps to chromosome 3BS. Crop Sci 58:152–158

    CAS  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9(1):29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lantican MA, Braun HJ, Payne TS, Singh RP, Sonder K, Baum M et al (2016) Impacts of international wheat improvement research 1994–2014. CIMMYT, Mexico

    Google Scholar 

  • Lawson DJ, Hellenthal G, Myers S, Falush D (2012) Inference of population structure using dense haplotype data. PLoS Genet 8:e1002453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li MX, Yeung JM, Cherny SS, Sham PC (2012) Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 131(5):747–756

    CAS  PubMed  Google Scholar 

  • Li G, Xu X, Bai G, Carver BF, Hunger R, Bonman JM et al (2016) Genome-wide association mapping reveals novel QTL for seedling leaf rust resistance in a worldwide collection of winter wheat. Plant Genome. https://doi.org/10.3835/plantgenome2016.06.0051

    Article  PubMed  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399

    CAS  PubMed  Google Scholar 

  • Liu TG, Peng YL, Chen WQ, Zhang ZY (2010) First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (= Yr26) present in wheat cultivar Chuanmai 42. Plant Dis 94(9):1163–1163

    CAS  PubMed  Google Scholar 

  • Lorenz K, Cohen BA (2012) Small-and large-effect quantitative trait locus interactions underlie variation in yeast sporulation efficiency. Genetics 192(3):1123–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123(1):143–157

    PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D et al (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 Genes Genomes Genet 5(3):449–465

    Google Scholar 

  • MacLeod IM, Bowman PJ, Vander Jagt CJ, Haile-Mariam M, Kemper KE, Chamberlain AJ et al (2016) Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits. BMC Genom 17(1):144

    CAS  Google Scholar 

  • Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111(3):496–504

    CAS  PubMed  Google Scholar 

  • Manickavelu A, Joukhadar R, Jighly A, Lan C, Huerta-Espino J, Stanikzai AS et al (2016) Genome wide association mapping of stripe rust resistance in Afghan wheat landraces. Plant Sci 252:222–229

    CAS  PubMed  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publishing, Melbourne

    Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihalyov PD, Nichols VA, Bulli P, Rouse MN, Pumphrey MO (2017) Multi-locus mixed model analysis of stem rust resistance in winter wheat. Plant Genome. https://doi.org/10.3835/plantgenome2017.01.0001

    Article  PubMed  Google Scholar 

  • Miranda LM, Perugini L, Srnic G, Brown-Guedira G, Marshall D, Leath S, Murphy JP (2007) Genetic mapping of a Triticum monococcum derived powdery mildew resistance gene in common wheat. Crop Sci 47:2323–2329

    CAS  Google Scholar 

  • Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong GY, Myles S (2015) LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3 Genes Genomes Genet 5(11):2383–2390

    Google Scholar 

  • Naruoka Y, Ando K, Bulli P, Muleta KT, Rynearson S, Pumphrey MO (2016) Identification and validation of SNP markers linked to the stripe rust resistance gene Yr5 in wheat. Crop Sci 56(6):3055–3065

    CAS  Google Scholar 

  • Nsabiyera V, Qureshi N, Bariana HS, Wong D, Forrest KL, Hayden MJ, Bansal UK (2016) Molecular markers for adult plant leaf rust resistance gene Lr48 in wheat. Mol Breed 36(6):65

    Google Scholar 

  • Nsabiyera V, Bariana HS, Qureshi N, Wong D, Hayden MJ, Bansal UK (2018) Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet 131(7):1459–1467

    CAS  PubMed  Google Scholar 

  • Park RF (2007) Stem rust of wheat in Australia. Aust J Agric Res 58(6):558–566

    Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L et al (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341(6147):786–788

    CAS  PubMed  Google Scholar 

  • Periyannan S, Bansal U, Bariana H, Deal K, Luo MC, Dvorak J, Lagudah E (2014) Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor Appl Genet 127(4):947–955

    CAS  PubMed  Google Scholar 

  • Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19(1):149–150

    CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi N, Kandiah P, Gessese MK, Nsabiyera V, Wells V, Babu P et al (2018) Development of co-dominant KASP markers co-segregating with Ug99 effective stem rust resistance gene Sr26 in wheat. Mol Breed 38(8):97

    Google Scholar 

  • Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127(2):317–324

    CAS  PubMed  Google Scholar 

  • Randhawa MS, Bariana HS, Mago R, Bansal UK (2015) Mapping of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat. Mol Breed 35(2):65

    Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294

    CAS  PubMed  Google Scholar 

  • Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126(10):2427–2449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sham PC, Cherny SS, Purcell S, Hewitt JK (2000) Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. Am J Hum Genet 66(5):1616–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer CC, Su Z, Donnelly P, Marchini J (2009) Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet 5(5):e1000477

    PubMed  PubMed Central  Google Scholar 

  • Turner MK, Kolmer JA, Pumphrey MO, Bulli P, Chao S, Anderson JA (2017) Association mapping of leaf rust resistance loci in a spring wheat core collection. Theor Appl Genet 130(2):345–361

    CAS  PubMed  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423

    CAS  PubMed  Google Scholar 

  • Wang L, Ma J, Zhou R, Wang X, Jia J (2002) Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, PI 178383 (Triticum aestivum L.). Euphytica 124(1):71–73

    CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Chen YPP, Bowman PJ, Goddard ME, Hayes BJ (2016) A hybrid expectation maximisation and MCMC sampling algorithm to implement Bayesian mixture model based genomic prediction and QTL mapping. BMC Genom 17(1):744

    Google Scholar 

  • Wang T, Chen YPP, MacLeod IM, Pryce JE, Goddard ME, Hayes BJ (2017) Application of a Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping. BMC Genom 18(1):618

    Google Scholar 

  • Wang Z, Ren J, Du Z, Che M, Zhang Y, Quan W et al (2018) Identification of a major QTL on chromosome arm 2AL for reducing yellow rust severity from a Chinese wheat landrace with evidence for durable resistance. Theor Appl Genet. https://doi.org/10.1007/s00122-018-3232-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterhouse WL (1929) Australian rust studies. I. Proc Linn Soc NSW 54:615–680

    Google Scholar 

  • Watson IA, Butler FC (1984) Wheat rust control in Australia. In: National conferences and other initiatives and developments. The University of Sydney, Sydney, NSW

  • Watson IA, Luig NH (1963) The classification of Puccinia graminis var. tritici in relation to breeding resistant varieties. Proc Linn Soc NSW 88:235–258

    Google Scholar 

  • Wellings CR (2007) Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust J Agric Res 58:567–575

    Google Scholar 

  • Yan W (2001) GGEBiplot—a Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron J 93:1111–1118

    Google Scholar 

  • Yan W, Kang MS (2002) Cultivar evaluation based on multiple traits. In: Yan W, Kang MS (eds) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, London

    Google Scholar 

  • Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46(2):100–106

    PubMed  PubMed Central  Google Scholar 

  • Yu LX, Barbier H, Rouse MN, Singh S, Singh RP, Bhavani S et al (2014) A consensus map for Ug99 stem rust resistance loci in wheat. Theor Appl Genet 127(7):1561–1581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Zhang Q, Friesen TL, Rouse MN, Jin Y, Zhong S et al (2015) Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. Theor Appl Genet 128(3):431–443

    CAS  PubMed  Google Scholar 

  • Yu LX, Chao S, Singh RP, Sorrells ME (2017) Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat. PLoS ONE 12(2):e0171963

    PubMed  PubMed Central  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Google Scholar 

  • Zhang W, Chen S, Abate Z, Nirmala J, Rouse MN, Dubcovsky J (2017) Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. In: Proceedings of the national academy of sciences 201706277

  • Zheng X, Weir BS (2016) Eigenanalysis of SNP data with an identity by descent interpretation. Theor Popul Biol 107:65–76

    PubMed  Google Scholar 

  • Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44(7):821–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Stephens M (2014) Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods 11(4):407–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zwart RS, Thompson JP, Milgate AW, Bansal UK, Williamson PM, Raman H, Bariana HS (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed 26:107–124

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Manisha Shankar for managing both the Carnarvon and Manjimup sites and collected the stripe rust phenotypic data from Manjimup; Dr. Andrew Milgate for managing the Wagga Wagga site and collected the stripe rust phenotypic data from Manjimup; Dr. Gill for managing the Cobbitty trial; Mr. Graham Exell for managing the field operations of the AgVic field nurseries.

Author information

Authors and Affiliations

Authors

Contributions

RJ analyzed the data and drafted the manuscript; HD, TG and MH supervised the study; GH phenotyped the germplasm; SK provided and multiplied the germplasm; KF, DW and JP genotyped the germplasm; FS processed the genotypic and phenotypic data; RP did the field experimental design; MH and JT managed the project; HB and UB provided the Watkins germplasm and edited the manuscript; MH and GS gave the final acceptance for the manuscript to be submitted. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Reem Joukhadar.

Additional information

Communicated by Hermann Buerstmayr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2020_3626_MOESM1_ESM.xlsx

Table S1. Passport information for the accessions used in the present study. Column FS_Pop represents the subpopulation inferred from fineStructure analysis; column Major represents the major cluster as shown in Fig. 3a; Column Geo_Pop represents the geographical subpopulation shown in Figure S1; Pop_Color represents the color of the geographical population as shown in Figure S1; column All3BS_QTL defines the genotypes the carry the three QTL on chromosome 3BS located between 9.7 and 14.1 cM. (XLSX 116 kb)

122_2020_3626_MOESM2_ESM.xlsx

Table S2. Average max and min temperature, rainfall, evaporation, radiation and vapor pressure every month during 2014 and 2015 in all studied locations. (XLSX 18 kb)

Table S3. Details of rust pathotypes used in each location (DOCX 27 kb)

122_2020_3626_MOESM4_ESM.xlsx

Table S4. A) Detailed information about the QTL detected in the present study; B) QTL detected using BayesR only. The last 17 columns represent the frequency of the resistance allele within each subpopulation and their colors were scaled based on their values for easier visualization; first number represents the subpopulation ID (column “Geo_Pop” in Table S1), while the second number represents the number of genotypes in the subpopulation. NS, not significant; * the position of the SNP is defined using LD with other SNPs. (XLSX 118 kb)

Figure S1. Map showing the size and geographical distribution of each subpopulation used in the study. (PDF 566 kb)

122_2020_3626_MOESM6_ESM.pdf

Figure S2. Pie charts representing the proportion of resistance, moderate or susceptible accessions within each subpopulation across all environments. R represents scores from 1 to 3, M represents scores from 4 to 6; and S represents scores from 7 to 9. Ca: Carnarvon; Co: Cobbitty; Ho: Horsham; Ma: Manjimup; Wa: Wagga Wagga. (PDF 186 kb)

122_2020_3626_MOESM7_ESM.pdf

Figure S3. Phenotypic correlation between different traits/environments. Above triangle shows the correlation r value and its significance (*p < 0.05, **p < 0.01, and ***p < 0.001). Ca: Carnarvon; Co: Cobbitty; Ho: Horsham; Ma: Manjimup; Wa: Wagga Wagga. (PDF 209 kb)

122_2020_3626_MOESM8_ESM.png

Figure S4. Linkage disequilibrium decay for all chromosomes together. The red line represents the Loess 2nd degree smoothing. The blue horizontal line represents the r2 critical value. (PNG 11 kb)

122_2020_3626_MOESM9_ESM.png

Figure S5. Linkage disequilibrium decay for individual wheat chromosomes. Each column represents chromosomes of a sub-genome (A, B and D from left to right) and each row represents one chromosomal group (1 to 7 starting from top to bottom). The red line represents the Loess 2nd degree smoothing. The blue horizontal line represents the r2 critical value. (PNG 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joukhadar, R., Hollaway, G., Shi, F. et al. Genome-wide association reveals a complex architecture for rust resistance in 2300 worldwide bread wheat accessions screened under various Australian conditions. Theor Appl Genet 133, 2695–2712 (2020). https://doi.org/10.1007/s00122-020-03626-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03626-9

Navigation