Skip to main content
Log in

Characteristics of Cu isotopes from chalcopyrite-rich black smoker chimneys at Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau basin

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

We analysed primary chalcopyrite from modern seafloor ‘black smoker’ chimneys to investigate high-temperature hydrothermal Cu isotope fractionation unaffected by metamorphism. Samples came from nine chimneys collected from Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau backarc basin. This is the first known study of Cu isotopes from submarine intraoceanic arc/backarc volcanoes, with both volcanoes discharging significant amounts of magmatic volatiles. Our results (n = 22) range from δ65Cu = −0.03 to 1.44 ± 0.18 ‰ (2 sd), with the majority of samples between ∼0.00 and 0.50 ‰. We interpret this cluster (n = 17) of lower δ65Cu values as representing a mantle source for the chimney Cu, in agreement with δ65Cu values for mantle rocks. The few higher δ65Cu values (>0.90 ‰) occur (1) within the same chimneys as lower values, (2) randomly distributed within the chimneys (i.e. near the top and bottom, interior and exterior), and (3) within chalcopyrite of approximately the same age (<1 year). This suggests the higher δ65Cu values are not related to oxidation by mixing with ambient seawater, but to isotopic variation within the vent fluids over a relatively short time. Theoretical studies demonstrate significant isotopic fractionation can occur between aqueous and vapourous complexing species. When combined with evidence for periodic release of magmatic volatiles at Brothers, we believe vapour transport of Cu is responsible for the observed isotopic fractionation. When compared to global δ65Cu data for primary chalcopyrite, volcanic arc chimneys are most similar to porphyry copper deposits that also form from magmatic-hydrothermal processes in convergent tectonic settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arculus RJ (2005) Arc-backarc systems of northern Kermadec-Tonga. Crown Minerals, Ministry of Economic Development, Wellington, pp 45–50, New Zealand Minerals Conference

    Google Scholar 

  • Asael D, Matthews A, Bar-Matthews M, Halicz L (2007) Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem Geol 243:238–254. doi:10.1016/j.chemgeo.2007.06.007

    Article  Google Scholar 

  • Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L (2009) Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits. Chem Geol 262:147–158. doi:10.1016/j.chemgeo.2009.01.015

    Article  Google Scholar 

  • Baker ET, Embley RW, de Ronde CEJ, Walker SL (2012) High-resolution hydrothermal mapping of Brothers caldera, Kermadec arc. Econ Geol 107:1583–1593. doi:10.2113/econgeo.107.8.1583

    Article  Google Scholar 

  • Berkenbosch HA, de Ronde CEJ, Gemmell JB, McNeill AW, Goemann K (2012a) Mineralogy and formation of black smoker chimneys from Brothers submarine volcano, Kermadec arc. Econ Geol 107:1613–1633. doi:10.2113/econgeo.107.8.1613

    Article  Google Scholar 

  • Berkenbosch HA, de Ronde CEJ, McNeill A, Goemann K, Gemmell JB (2012b) Trace element distribution, with a focus on gold, in copper-rich and zinc-rich sulfide chimneys from Brothers submarine volcano, Kermadec arc. American Geophysical Union Fall Meeting. American Geophysical Union, Washington, DC, San Francisco, pp Abstract OS44A-07

  • Braxton D, Mathur R (2011) Exploration applications of copper isotopes in the supergene environment: a case study of the Bayugo porphyry copper-gold deposit, southern Philippines. Econ Geol 106:1447–1463. doi:10.2113/econgeo.106.8.1447

    Article  Google Scholar 

  • Butterfield DA, Nakamura KI, Takano B, Lilley MD, Lupton JE, Resing JA, Roe KK (2011) High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano. Geology 39:803–806. doi:10.1130/g31901.1

    Article  Google Scholar 

  • Caratori Tontini F, Davy B, de Ronde CEJ, Embley RW, Leybourne MI, Tivey MA (2012) Crustal magnetization of Brothers volcano, New Zealand, measured by autonomous underwater vehicles: geophysical expression of a submarine hydrothermal system. Econ Geol 107:1571–1581. doi:10.2113/econgeo.107.8.1571

    Article  Google Scholar 

  • Chadwick WW Jr, Cashman KV, Embley RW, Matsumoto H, Dziak RP, de Ronde CEJ, Lau TK, Deardorff ND, Merle SG (2008) Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. J Geophys Res Solid Earth 113. doi:10.1029/2007jb005215

  • de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CJ, Resing JA (2005) Evolution of a submarine magmatic-hydrothermal system: Brothers volcano, southern Kermadec arc, New Zealand. Econ Geol 100:1097–1133. doi:10.2113/100.6.1097

    Article  Google Scholar 

  • de Ronde CEJ, Massoth GJ, Butterfield DA, Christenson BW, Ishibashi J, Ditchburn RG, Hannington MD, Brathwaite RL, Lupton JE, Kamenetsky VS, Graham IJ, Zellmer GF, Dziak RP, Embley RW, Dekov VM, Munnik F, Lahr J, Evans LJ, Takai K (2011) Submarine hydrothermal activity and gold-rich mineralization at Brothers volcano, Kermadec arc, New Zealand. Miner Deposita 46:541–584. doi:10.1007/s00126-011-0345-8

    Article  Google Scholar 

  • de Ronde CEJ, Butterfield DA, Leybourne MI (2012) Metallogenesis and mineralization of intraoceanic arcs I: Kermadec arc—introduction. Econ Geol 107:1521–1525. doi:10.2113/econgeo.107.8.1521

    Article  Google Scholar 

  • Dziak RP, Haxel JH, Matsumoto H, Lau TK, Merle SG, de Ronde CEJ, Embley RW, Mellinger DK (2008) Observations of regional seismicity and local harmonic tremor at Brothers volcano, south Kermadec arc, using an ocean bottom hydrophone array. J Geophys Res Solid Earth 113:13. doi:10.1029/2007JB005533

    Article  Google Scholar 

  • Ehrlich S, Butler I, Halicz L, Rickard D, Oldroyd A, Matthews A (2004) Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS. Chem Geol 209:259–269. doi:10.1016/j.chemgeo.2004.06.010

    Article  Google Scholar 

  • Embley RW, de Ronde CEJ, Merle SG, Davy B, Caratori Tontini F (2012) Detailed morphology and structure of an active submarine arc caldera: Brothers volcano, Kermadec arc. Econ Geol 107:1557–1570. doi:10.2113/econgeo.107.8.1557

    Article  Google Scholar 

  • Embley RW, Resing J, Tebo B, Baker ET, Butterfield DA, Chadwick Jr WW, Davis R, de Ronde CEJ, Lilley MD, Lupton JE, Merle SG, Rubin KH, Shank TM, Walker SL, Arculus RJ, Bobbit AM, Buck N, Caratori Tontini F, Crowhurst PV, Mitchell E, Olson EJ, Ratmeyer V, Richards S, Roe K, Keener P, Maritnez-Lyons A, Sheehan C, Brian R (2013) Hyperactive hydrothermal activity in the NE Lau basin revealed by ROV dives. AGU. San Francisco

  • Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510

    Article  Google Scholar 

  • Graham S, Pearson N, Jackson S, Griffin W, O’Reilly SY (2004) Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chem Geol 207:147–169. doi:10.1016/j.chemgeo.2004.02.009

    Article  Google Scholar 

  • Gruen G, Weis P, Driesner T, de Ronde CEJ, Heinrich CA (2012) Fluid-flow patterns at Brothers volcano, southern Kermadec arc: insights from geologically constrained numerical simulations. Econ Geol 107:1595–1611. doi:10.2113/econgeo.107.8.1571

    Article  Google Scholar 

  • Gruen G, Weis P, Driesner T, Heinrich CA, de Ronde CEJ (2014) Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation. Earth Planet Sci Lett 404:307–318. doi:10.1016/j.epsl.2014.07.041

    Article  Google Scholar 

  • Haest M, Muchez P, Petit JCJ, Vanhaecke F (2009) Cu isotope ratio variations in the Dikulushi Cu-Ag deposit, DRC: of primary origin or induced by supergene reworking? Econ Geol 104:1055–1064. doi:10.2113/gsecongeo.104.7.1055

    Article  Google Scholar 

  • Haymon RM (1983) Growth history of hydrothermal black smoker chimneys. Nature 301:695–698. doi:10.1038/301695a0

    Article  Google Scholar 

  • Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ (1992) Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis. Econ Geol 87:1566–1583. doi:10.2113/gsecongeo.87.6.1566

    Article  Google Scholar 

  • Ikehata K, Hirata T (2012) Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, northern Japan. Econ Geol 107:1489–1497. doi:10.2113/econgeo.107.7.1489

    Article  Google Scholar 

  • Ikehata K, Notsu K, Hirata T (2011) Copper isotope characteristics of copper-rich minerals from besshi-type volcanogenic massive sulfide deposits, Japan, determined using a femtosecond LA-MC-ICP-MS. Econ Geol 106:307–316. doi:10.2113/econgeo.106.2.307

    Article  Google Scholar 

  • Jiang S, Jon W, Yu J, Pan J, Liao Q, Wu N (2002) A reconnaissance of Cu isotopic compositions of hydrothermal vein-type copper deposit, Jinman, Yunnan, China. Chin Sci Bull 47:247–250. doi:10.1360/02tb9059

    Article  Google Scholar 

  • Kim J, Son SK, Son JW, Kim KH, Shim WJ, Kim CH, Lee KY (2009) Venting sites along the Fonualei and Northeast Lau Spreading Centers and evidence of hydrothermal activity at an off-axis caldera in the northeastern Lau basin. Geochem J 43:1–13. doi:10.2343/geochemj.0.0164

    Article  Google Scholar 

  • Kim J, Lee KY, Kim JH (2011) Metal-bearing molten sulfur collected from a submarine volcano: implications for vapor transport of metals in seafloor hydrothermal systems. Geology 39:351–354. doi:10.1130/g31665.1

    Article  Google Scholar 

  • Kimball BE, Mathur R, Dohnalkova AC, Wall AJ, Runkel RL, Brantley SL (2009) Copper isotope fractionation in acid mine drainage. Geochim Cosmochim Acta 73:1247–1263. doi:10.1016/j.gca.2008.11.035

    Article  Google Scholar 

  • Larson PB, Maher K, Ramos FC, Chang Z, Gaspar M, Meinert LD (2003) Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem Geol 201:337–350. doi:10.1016/j.chemgeo.2003.08.006

    Article  Google Scholar 

  • Li W, Jackson SE, Pearson NJ, Alard O, Chappell BW (2009) The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem Geol 258:38–49. doi:10.1016/j.chemgeo.2008.06.047

    Article  Google Scholar 

  • Li W, Jackson SE, Pearson NJ, Graham S (2010) Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia. Geochim Cosmochim Acta 74:4078–4096. doi:10.1016/j.gca.2010.04.003

    Article  Google Scholar 

  • Lowenstern JB, Mahood GA, Rivers ML, Sutton SR (1991) Evidence for extreme partitioning of copper into a magmatic vapor phase. Science 252:1405–1409

    Article  Google Scholar 

  • Lupton JE (1983) Terrestrial inert gases: isotope tracer studies and clues to primordial components in the mantle. Annu Rev Earth Planet Sci 11:371–414

    Article  Google Scholar 

  • Maher KC (2005) Analysis of copper isotope ratios by multi-collector inductively coupled plasma mass spectrometry and interpretation of copper isotope ratios from copper mineralization. Dissertation, Department of Geology. Washington State University, pp 249

  • Maher KC, Larson PB (2007) Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Peru. Econ Geol 102:225–237. doi:10.2113/gsecongeo.102.2.225

    Article  Google Scholar 

  • Maher KC, Jackson S, Mountain B (2011) Experimental evaluation of the fluid-mineral fractionation of Cu isotopes at 250 °C and 300 °C. Chem Geol 286:229–239. doi:10.1016/j.chemgeo.2011.05.008

    Google Scholar 

  • Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273. doi:10.1016/S0009-2541(98)00191-0

    Article  Google Scholar 

  • Markl G, Lahaye Y, Schwinn G (2006) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70:4215–4228. doi:10.1016/j.gca.2006.06.1369

    Article  Google Scholar 

  • Marty B, Dauphas N (2003) The nitrogen record for crust-mantle interaction and mantle convection from Archean to present. Earth Planet Sci Lett 206:397–410. doi:10.1016/s0012-821x(02)01108-1

    Article  Google Scholar 

  • Mason TFD, Weiss DJ, Chapman JB, Wilkinson JJ, Tessalina SG, Spiro B, Horstwood MSA, Spratt J, Coles BJ (2005) Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem Geol 221:170–187. doi:10.1016/j.chemgeo.2005.04.011

    Article  Google Scholar 

  • Massoth GJ, de Ronde CEJ, Lupton JE, Feely RA, Baker ET, Lebon GT, Maenner SM (2003) Chemically rich and diverse submarine hydrothermal plumes of the southern Kermadec volcanic arc (New Zealand). In: Larter RD, Leat PT (eds) Intra-oceanic subduction systems: tectonic and magmatic processes. Geological Society of London, London, pp 119–139

    Google Scholar 

  • Mathur R, Ruiz J, Titley S, Liermann L, Buss H, Brantley S (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim Cosmochim Acta 69:5233–5246. doi:10.1016/j.gca.2005.06.022

    Article  Google Scholar 

  • Mathur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga F, Maksaev V, Vervoort J, Hart G (2009a) Exploration potential of Cu isotope fractionation in porphyry copper deposits. J Geochem Explor 102:1–6. doi:10.1016/j.gexplo.2008.09.004

    Article  Google Scholar 

  • Mathur R, Titley S, Hart G, Wilson M, Davignon M, Zlatos C (2009b) The history of the United States cent revealed through copper isotope fractionation. J Archaeol Sci 36:430–433. doi:10.1016/j.jas.2008.09.029

    Article  Google Scholar 

  • Mathur R, Ruiz J, Casselman MJ, Megaw P, van Egmond R (2012) Use of Cu isotopes to distinguish primary and secondary Cu mineralization in the Cañariaco Norte porphyry copper deposit, northern Peru. Miner Deposita 47:755–762. doi:10.1007/s00126-012-0439-y

    Article  Google Scholar 

  • Mathur R, Munk L, Nguyen M, Gregory M, Annell H, Lang J (2013) Modern and paleofluid pathways revealed by Cu isotope compositions in surface waters and ores of the Pebble porphyry Cu-Au-Mo deposit, Alaska. Econ Geol 108:529–541. doi:10.2113/econgeo.108.3.529

    Article  Google Scholar 

  • Mavrogenes JA, Berry AJ, Newville M, Sutton SR (2002) Copper speciation in vapor-phase fluid inclusions from the Mole Granite, Australia. Am Mineral 87:1360–1364

    Article  Google Scholar 

  • Migdisov AA, Bychkov A, Williams-Jones AE, van Hinsberg VJ (2014) A predictive model for the transport of copper by HCl-bearing water vapor in ore-forming magmatic-hydrothermal systems: implications for copper porphyry ore formation. Geochim Cosmochim Acta 129:33–53. doi:10.1016/j.gca.2013.12.024

    Article  Google Scholar 

  • Mirnejad H, Mathur R, Einali M, Dendas M, Alirezaei S (2010) A comparative copper isotope study of porphyry copper deposits in Iran. Geochem-Explor Env A 10:413–418. doi:10.1144/1467-7873/09-229

    Article  Google Scholar 

  • Palacios C, Rouxel O, Reich M, Cameron EM, Leybourne MI (2011) Pleistocene recycling of copper at a porphyry system, Atacama Desert, Chile: Cu isotope evidence. Miner Deposita 46:1–7. doi:10.1007/s00126-010-0315-6

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518. doi:10.1039/c1ja10172b

    Article  Google Scholar 

  • Rempel KU, Liebscher A, Meixner A, Romer RL, Heinrich W (2012) An experimental study of the elemental and isotopic fractionation of copper between aqueous vapor and liquid to 450 °C and 400 bar in the CuCl-NaCl-H2O and CuCl-NaHS-NaCl-H2O systems. Geochim Cosmochim Acta 94:199–216. doi:10.1016/j.gca.2012.06.028

    Article  Google Scholar 

  • Rouxel O, Fouquet Y, Ludden JN (2004) Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge. Econ Geol 99:585–600. doi:10.2113/99.3.585

    Article  Google Scholar 

  • Seo JH, Lee SK, Lee I (2007) Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids. Chem Geol 243:225–237. doi:10.1016/j.chemgeo.2007.05.025

    Article  Google Scholar 

  • Sherman DM (2013) Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: predictions from hybrid density functional theory. Geochim Cosmochim Acta 118:85–97. doi:10.1016/j.gca.2013.04.030

    Article  Google Scholar 

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids In: Humphris SE, Sierenberg RA, Mullineaux LS, Thompson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, pp 222–247

  • Zhu XK, O’Nions RK, Guo Y, Belshaw NS, Rickard D (2000) Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers. Chem Geol 163:139–149. doi:10.1016/S0009-2541(99)00076-5

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by an Australian Research Council Centre of Excellence in Ore Deposits (CODES) research scholarship (University of Tasmania), an AusIMM Bicentennial Gold 88 endowment, and a Society of Economic Geologists Foundation student research grant from the Hugh E. McKinstry Fund, all to H. Berkenbosch. C. de Ronde was supported by public research funding from the Government of New Zealand. We thank S.G. Merle for assistance with Figs. 1 and 2 and T. Seward for helpful insight into Cu complexes. This manuscript was also improved by helpful suggestions from R. Mathur and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Berkenbosch.

Additional information

Editorial handling: F. Tornos and B. Lehmann

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(XLSX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkenbosch, H.A., de Ronde, C.E.J., Paul, B.T. et al. Characteristics of Cu isotopes from chalcopyrite-rich black smoker chimneys at Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau basin. Miner Deposita 50, 811–824 (2015). https://doi.org/10.1007/s00126-014-0571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-014-0571-y

Keywords

Navigation