Skip to main content
Log in

Hydrothermal fluid evolution in the Escondida porphyry copper deposit, northern Chile: evidence from SEM-CL imaging of quartz veins and LA-ICP-MS of fluid inclusions

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The origin of hypogene alteration and mineralization features in the Escondida porphyry Cu deposit resulted from intense overprinting related to three main hydrothermal stages. The beginning of each stage is recorded by deposition of bright quartz crystals on vein walls that precipitated from high-temperature fluids. In the deepest zones of the deposit, the earliest stage started with exsolution of intermediate-density fluids, which transported high concentrations of Cu, whereas Mo was not detected. However, in the shallow zones, the early stage began with depressurization and unmixing of intermediate-density fluids, which generated both a hypersaline and vapour-rich fluid phase, producing an important geochemical segregation between both phases. The transitional stage also started with circulation of intermediate-density fluids but never experienced unmixing. These fluids transported the highest Mo concentrations in the deposit; however, Cu displays lower concentrations relative to intermediate-density fluids from the early stage. The beginning of the late stage was also associated with intermediate-density fluids; however, Cu and Mo were below the detection limits in most of the analysed fluids. During the evolution of the three stages, the fluids experienced gradual cooling, which promoted the precipitation of euhedral and zoned quartz crystals that overgrew the early high-luminescence quartz generations. Sometimes, sulfide minerals display euhedral crystal boundaries with zoned quartz, suggesting that mineralization started during these phases. The latest events detected in each main stage are linked to cooler and low-salinity fluids, from which dark quartz and hypogene sulfides precipitated along microfractures and interstitial spaces developed in the earlier quartz generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Mpodozis et al. 1993)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alpers CN, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol Soc Am Bull 100:1640–1656. https://doi.org/10.1130/0016-7606(1988)100%3c1640:MMCCIT%3e2.3.CO;2

  • Audétat A, Günther D, Heinrich CA (2000) Causes for large-scale metal zonation around mineralized plutons: fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Econ Geol 95:1563–1581. https://doi.org/10.2113/gsecongeo.95.8.1563

    Article  Google Scholar 

  • Audétat A, Pettke T (2003) The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA). Geochim Cosmochim Acta 67:97–121. https://doi.org/10.1016/S0016-7037(02)01049-9

    Article  Google Scholar 

  • Audétat A, Li W (2017) The genesis of Climax-type porphyry Mo deposits: insights from fluid inclusions and melt inclusions. Ore Geol Rev 88:436–460. https://doi.org/10.1016/j.oregeorev.2017.05.018

    Article  Google Scholar 

  • Batkhishig B, Bignall G, Tsuchiya N (2005) Hydrothermal quartz vein formation, revealed by coupled SEM-CL imaging and fluid inclusion microthermometry: Shuteen Complex, South Gobi, Mongolia. Resour Geol 55:1–8. https://doi.org/10.1111/j.1751-3928.2005.tb00223.x

    Article  Google Scholar 

  • Bodnar RJ, Beane RE (1980) Temporal and spatial variations in hydrothermal fluid characteristics during vein filling in preore cover overlying deeply buried porphyry copper-type mineralization at Red Mountain, Arizona. Econ Geol 75:876–893. https://doi.org/10.2113/gsecongeo.75.6.876

    Article  Google Scholar 

  • Bodnar RJ (2003) Interpretation of data from aqueous-electrolyte fluid inclusions. In: Samson I, Anderson A, Marshall D (eds). Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada. Short Course Ser 32:81–100

  • Boggs S, Krinsley D (2006) Application of cathodoluminescence imaging to the study of sedimentary rocks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bourcier WL, Barnes HL (1987) Ore solution chemistry; VII, stabilities of chloride and bisulfide complexes of zinc to 350 degrees C. Econ Geol 82:1839–1863. https://doi.org/10.2113/gsecongeo.82.7.1839

    Article  Google Scholar 

  • Candela PA, Holland HD (1986) A mass transfer model for copper and molybdenum in magmatic hydrothermal systems; the origin of porphyry-type ore deposits. Econ Geol 81:1–19. https://doi.org/10.2113/gsecongeo.81.1.1

    Article  Google Scholar 

  • Cathles LM, Shannon R (2007) How potassium silicate alteration suggests the formation of porphyry ore deposits begins with the nearly explosive but barren expulsion of large volumes of magmatic water. Earth Planet Sci Lett 262:92–108. https://doi.org/10.1016/j.epsl.2007.07.029

    Article  Google Scholar 

  • Chang J,  Li J,  Audétat A (2018) Formation and evolution of multistage magmatic-hydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet: insights from LA-ICP-MS analysis of fluid inclusions. Geochim Cosmochim Acta 232:181–205. https://doi.org/10.5382/econgeo.4788

  • Chen P, Zeng Q, Zhou T, Wang Y, Yu B, Chen J (2019) Evolution of fluids in the Dasuji porphyry Mo deposit on the northern margin of the North China Craton: constraints from Microthermometric and LA-ICP-MS analyses of fluid inclusions. Ore Geol Rev 104:26–45. https://doi.org/10.1016/j.oregeorev.2018.10.012

  • Cornejo P, Tosdal RM, Mpodozis C, Tomlinson AJ, Rivera O, Fanning CM (1997) El Salvador, Chile porphyry copper deposit revisited: geologic and geochronologic framework. Int Geol Rev 39:22–54. https://doi.org/10.1080/00206819709465258

    Article  Google Scholar 

  • Crerar DA, Barnes HL (1976) Ore solution chemistry; V, solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 degrees to 350 degrees C. Econ Geol 71:772–794. https://doi.org/10.2113/gsecongeo.71.4.772

    Article  Google Scholar 

  • Fournier RO (1985) The behavior of silica in hydrothermal solutions. In: Berger BR, Bethke PM (eds) Geology and Geochemistry of Epithermal Systems. Rev Econ Geol2; 45–61

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912. https://doi.org/10.2113/gsecongeo.70.5.857

    Article  Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Article  Google Scholar 

  • Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ (1992) Segregation of ore metals between magmatic brine and vapor; a fluid inclusion study using PIXE microanalysis. Econ Geol 87:1566–1583. https://doi.org/10.2113/gsecongeo.87.6.1566

    Article  Google Scholar 

  • Heinrich CA, Gunther D, Audétat A, Ulrich T, Frischknecht R (1999) Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27:755–758. https://doi.org/10.1130/0091-7613(1999)027%3c0755:MFBMBA%3e2.3.CO;2

  • Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat A, Günther D, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta 67:3473–3497. https://doi.org/10.1016/S0016-7037(03)00084-X

    Article  Google Scholar 

  • Hervé M, Sillitoe R, Wong C, Fernández P, Crignola F, Ipinza M, Urzúa F (2012) Geologic overview of the Escondida porphyry copper district, Northern Chile. In: Hedenquist JW, Harris M, Camus F (eds) Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H.Sillitoe. Soc Econ Geol , Spec Publ 16: 55–78

  • Klemm LM, Pettke T, Heinrich CA, Campos E (2007) Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Econ Geol 102:1021–1045. https://doi.org/10.2113/gsecongeo.102.6.1021

    Article  Google Scholar 

  • Klemm LM, Pettke T, Heinrich CA (2008) Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Miner Deposita 43:533–552. https://doi.org/10.1007/s00126-008-0181-7

    Article  Google Scholar 

  • Kouzmanov K, Pokrovski GS (2012) Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. Soc Econ Geol, Spec Publ 16:573–618

    Google Scholar 

  • Landtwing MR, Pettke T, Halter WE, Heinrich CA, Redmond PB, Einaudi MT, Kunze K (2005) Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: the Bingham porphyry. Earth Planet Sci Lett 235:229–243. https://doi.org/10.1016/j.epsl.2005.02.046

    Article  Google Scholar 

  • Landtwing MR, Furrer C, Redmond PB, Pettke T, Guillong M, Heinrich CA (2010) The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ Geol 105:91–118. https://doi.org/10.2113/gsecongeo.105.1.91

    Article  Google Scholar 

  • Landtwing MR, Pettke T (2005) Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz. Am Mineral 90:122–131. https://doi.org/10.2138/am.2005.1548

  • Lerchbaumer L, Audétat A (2012) High Cu concentrations in vapor-type fluid inclusions: an artifact? Geochim Cosmochim Acta 88:255–274. https://doi.org/10.1016/j.gca.2012.04.033

    Article  Google Scholar 

  • Mavrogonatos C, Voudouris P, Berndt J, Klemme S, Zaccarini F, Spry P, Melfos V, Tarantola Α, Keith M, Klemd R, Haase K (2019) Trace elements in magnetite from the Pagoni Rachi porphyry prospect, NE Greece: implications for ore genesis and exploration. Minerals 9:725–725. https://doi.org/10.3390/min9120725

    Article  Google Scholar 

  • Marinovic N, Smoje I, Maksaev V, Hervé M, Mpodozis C (1992) Hoja deAguas Blancas, Región de Antofagasta. Serv Nac Geol Minería, Carta Geol Chile, p 70

  • Maydagán L, Franchini M, Rusk B, Lentz DR, McFarlane C, Impiccini A, Ríos FJ, Rey R (2015) Porphyry to epithermal transition in the Altar Cu-(Au-Mo) deposit, Argentina, studied by cathodoluminescence, LA-ICP-MS, and fluid inclusion analysis. Econ Geol 110:889–923. https://doi.org/10.2113/econgeo.110.4.889

    Article  Google Scholar 

  • Monecke T, Monecke J, Reynolds TJ, Tsuruoka S, Bennett MM, Skewes WB, Palin RM (2018) Quartz solubility in the H2O-NaCl system: a framework for understanding vein formation in porphyry copper deposits. Econ Geol 113:1007–1046. https://doi.org/10.5382/econgeo.2018.4580;40p

    Article  Google Scholar 

  • Mpodozis C, Cornejo P (2012) Cenozoic tectonics and porphyry copper systems of the Chilean Andes. In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe. Soc Econ Geol, Spec Publ 16;329–360

  • Mpodozis C, Marinovic N, Smoje I (1993) Eocene left lateral strike slip faulting and clockwise block rotations in the Cordillera de Domeyko, west of Salar de Atacama, northern Chile. In: Symposium Andean Geodinamics 2: 225–228. Oxford, UK

  • Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin DJ, Stenina NG, Kronz A (2010) Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Miner Deposita 45:707–727. https://doi.org/10.1007/s00126-010-0302-y

    Article  Google Scholar 

  • Nash JT (1976) Fluid-inclusion petrology-data from porphyry copper deposits and applications to exploration: a summary of new and published descriptions of fluid inclusions from 36 porphyry copper deposits and discussion of possible applications to exploration for copper deposits. US Govt. Print. Off.

  • Okamoto A, Sekine K (2011) Textures of syntaxial quartz veins synthesized by hydrothermal experiments. J Struct Geol 33:1764–1775. https://doi.org/10.1016/j.jsg.2011.10.004

    Article  Google Scholar 

  • Oliver NH, Bons PD (2001) Mechanisms of fluid flow and fluid–rock interaction in fossil metamorphic hydrothermal systems inferred from vein–wallrock patterns, geometry and microstructure. Geofluids 1:137–162. https://doi.org/10.1046/j.1468-8123.2001.00013.x

    Article  Google Scholar 

  • Padilla Garza RA, Titley SR, Pimentel FB (2001) Geology of the Escondida porphyry copper deposit, Antofagasta region, Chile. Econ Geol 96:307–324. https://doi.org/10.2113/gsecongeo.96.2.307

    Article  Google Scholar 

  • Padilla-Garza RA, Titley SR, Eastoe CJ (2004) Hypogene evolution of the Escondida porphyry copper deposit, Chile. In: Sillitoe RH, Perello J, Vidal CE (eds) Andean metallogeny: new discoveries, concepts and updates. Soc Econ Geol , Spec Publ 11:141–165 https://doi.org/10.5382/SP.11.07

  • Pettke T, Oberli F, Audétat A, Guillong M, Simon AC, Hanley JJ, Klemm LM (2012) Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geol Rev 44:10–38. https://doi.org/10.1016/j.oregeorev.2011.11.001

    Article  Google Scholar 

  • Penniston-Dorland SC (2001) Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. Am Mineral 86:652–666. https://doi.org/10.2138/am-2001-5-606

    Article  Google Scholar 

  • Quiroz F (2003) Geology and hypogene alteration and mineralization at Escondida, northern Chile: porphyry and high sulphidation events. Unpubl MSc thesis, Tucson, University of Arizona, 82 p

  • Reed MH, Palandri J (2006) Sulfide mineral precipitation from hydrothermal fluids. Rev Mineral Geochem 61:609–631. https://doi.org/10.2138/rmg.2006.61.11

    Article  Google Scholar 

  • Reutter KJ, Scheuber E, Helmcke D (1991) Structural evidence of orogeny-parallel strike slip displacements in the Precordillera of northern Chile. Geol Rundsch 80:135–153. https://doi.org/10.1007/BF01828772

    Article  Google Scholar 

  • Reynolds TJ, Beane RE (1985) Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit. Econ Geol 80:1328–1347. https://doi.org/10.2113/gsecongeo.80.5.1328

    Article  Google Scholar 

  • Richards JP, Noble SR, Pringle MS (1999) A revised late Eocene age for porphyry Cu magmatism in the Escondida area, northern Chile. Econ Geol 94:1234–1248. https://doi.org/10.2113/gsecongeo.94.8.1231

    Article  Google Scholar 

  • Richards JP, Boyce AJ, Pringle MS (2001) Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization. Econ Geol 96:271–305. https://doi.org/10.2113/gsecongeo.96.2.271

    Article  Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ Geol 98:1515–1533. https://doi.org/10.2113/98.8.1515

    Article  Google Scholar 

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40:1–26. https://doi.org/10.1016/j.oregeorev.2011.05.006

    Article  Google Scholar 

  • Roedder E, Bodnar RJ (1980) Geologic pressure determinations from fluid inclusion studies. Annu Rev Earth Planet Sci 8:263–301. https://doi.org/10.1146/annurev.ea.08.050180.001403

    Article  Google Scholar 

  • Romero B, Kojima S, Wong C, Barra F, Véliz W, Ruiz J (2010) Molybdenite mineralization and Re-Os geochronology of the Escondida and Escondida Norte porphyry deposits, northern Chile. Resour Geol 61:91–100. https://doi.org/10.1111/j.1751-3928.2010.00150

    Article  Google Scholar 

  • Ruaya JR, Seward TM (1986) The stability of chlorozinc (II) complexes in hydrothermal solutions up to 350°C. Geochim Cosmochim Acta 50:651–661. https://doi.org/10.1016/0016-7037(86)90343-1

    Article  Google Scholar 

  • Rusk BG (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. Am Mineral 91:1300–1312. https://doi.org/10.2138/am.2006.1984

  • Rusk B, Reed M (2002) Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 30:727–730. https://doi.org/10.1130/0091-7613(2002)030%3c0727:SEMCAO%3e2.0.CO;2

  • Rusk BG, Reed MH, Dilles JH, Klemm LM, Heinrich CA (2004a) Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, MT. Chem Geol 210:173–199. https://doi.org/10.1016/j.chemgeo.2004.06.011

    Article  Google Scholar 

  • Rusk B, Reed M, Krinsley D, Bignall G, Tsuchiya N (2004b) Natural and synthetic quartz growth and dissolution revealed by scanning electron microscope cathodoluminescence. In: Proc 14th Intern Conf Properties Water and Steam, Kyoto, Japan, p. 296–302

  • Rusk BG, Reed MH, Dilles JH (2008a) Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Econ Geol 103:307–334. https://doi.org/10.2113/gsecongeo.103.2.307

    Article  Google Scholar 

  • Rusk BG, Lowers HA, Reed MH (2008b) Trace elements in hydrothermal quartz: relationships to cathodoluminescent textures and insights into vein formation. Geology 36:547–550. https://doi.org/10.1130/G24580A.1

    Article  Google Scholar 

  • Seo JH, Guillong M, Heinrich CA (2012) Separation of molybdenum and copper in porphyry deposits: the roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon. Econ Geol 107:333–356. https://doi.org/10.2113/econgeo.107.2.333

    Article  Google Scholar 

  • Seo JH, Heinrich CA (2013) Selective copper diffusion into quartz-hosted vapor inclusions: evidence from other host minerals, driving forces, and consequences for Cu-Au ore formation. Geochim Cosmochim Acta 113:60–69. https://doi.org/10.1016/j.gca.2013.03.016

    Article  Google Scholar 

  • Seward TM, Barnes HL (1997) Metal transport by hydrothermal ore fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 435–486

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41. https://doi.org/10.2113/gsecongeo.105.1.3

    Article  Google Scholar 

  • Spencer ET, Wilkinson JJ, Creaser RA, Seguel J (2015) The distribution and timing of molybdenite mineralization at the El Teniente Cu-Mo porphyry deposit, Chile. Econ Geol 110:387–421. https://doi.org/10.2113/econgeo.110.2.387

    Article  Google Scholar 

  • Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ (2012) HOKIEFLINCS_H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Comput Geosci 49:334–337

    Article  Google Scholar 

  • Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochim Cosmochim Acta 52:989–1005. https://doi.org/10.1016/0016-7037(88)90254-2

  • Ulrich T, Guenther D, Heinrich CA (1999) Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399:676–679. https://doi.org/10.1038/21406

    Article  Google Scholar 

  • Ulrich T, Günther D, Heinrich CA (2001) The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ Geol 97:1889–1920. https://doi.org/10.2113/gsecongeo.97.8.1889

    Article  Google Scholar 

  • Véliz WO (2004) Relación espacio-temporal del sistema pórfido cuprífero y epitermal en el yacimiento Escondida, provincia de Antofagasta, Segunda Región, Chile. Unpubl MSc thesis, Antofagasta, Universidad Católica del Norte, 139 p

  • Vergara G (2002) Geología estructural de Escondida, Segunda Región deAntofagasta, Chile: Implicancia de la deformación frágil en el desarrollo de un sistema de pórfido cuprífero. Unpubl BSc thesis, Antofagasta, Universidad Católica del Norte, 82 p

  • Vry VH, Wilkinson JJ, Seguel J, Millán J (2010) Multistage intrusion, brecciation, and veining at El Teniente, Chile: evolution of a nested porphyry system. Econ Geol 105:119–153. https://doi.org/10.2113/gsecongeo.105.1.119

    Article  Google Scholar 

  • Wilkinson JJ, Johnston JD (1996) Pressure fluctuations, phase separation, and gold precipitation during seismic fracture propagation. Geology 24:395–398. https://doi.org/10.1130/0091-7613(1996)024%3c0395:PFPSAG%3e2.3.CO;2

  • Wilkinson JJ, Boyce AJ, Earls G, Fallick AE (1999) Gold remobilization by low-temperature brines; evidence from the Curraghinalt gold deposit, Northern Ireland. Econ Geol 94:289–296. https://doi.org/10.2113/gsecongeo.94.2.289

    Article  Google Scholar 

  • Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272. https://doi.org/10.1016/S0024-4937(00)00047-5

    Article  Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) 100th Anniversary special paper: vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312. https://doi.org/10.2113/gsecongeo.100.7.1287

    Article  Google Scholar 

  • Zacharias J, Wilkinson J (2007) ExLAM 2000: Excel VBA application for processing of transient signals from laser ablation (LA-ICP-MS) of fluid inclusions and solid phases [abs.]. Bern, Switzerland, Abstracts.

  • Zajacz Z, Halter W (2009) Copper transport by high temperature, sulfur-rich magmatic vapor: evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile). Earth Planet Sci Lett 282:115–121. https://doi.org/10.1016/j.epsl.2009.03.006

    Article  Google Scholar 

Download references

Acknowledgements

We thank Minera Escondida Ltd. for providing technical and logistical support during field and sampling activities. Analyses and interpretation of X-ray diffraction data were provided by Mr. F. Álvarez and Dr. N. Guerra, respectively. We are grateful to the Imaging and Analysis Centre at the Natural History Museum for supporting the SEM-CL and LA-ICP-MS work. We thank Brian Rusk and Thomas Bissig for their constructive comments that greatly improved the manuscript.

Funding

This research was funded by projects UCN-MEL 25.02.02/31.10.10.99, MECESUP 0711, and CONICYT 78092009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Riveros Jensen.

Additional information

Editorial handling: K. Kelley

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, K.R., Campos, E., Wilkinson, J.J. et al. Hydrothermal fluid evolution in the Escondida porphyry copper deposit, northern Chile: evidence from SEM-CL imaging of quartz veins and LA-ICP-MS of fluid inclusions. Miner Deposita 57, 279–300 (2022). https://doi.org/10.1007/s00126-021-01058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-021-01058-z

Keywords

Navigation