Skip to main content
Log in

Photodegradation of Mefenamic Acid in Aqueous Media: Kinetics, Toxicity and Photolysis Products

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The present study investigated the photolytic behavior and photodegradation products of mefenamic acid (MEF) under ultraviolet-C irradiation. The results demonstrated that the photodegradation of MEF followed pseudo-first-order kinetics and the direct photolysis quantum yield of mefenamic acid was observed to be 2.63 ± 0.28 × 10−3. Photodegradation of MEF included degradation by direct photolysis and by self-sensitization that the contribution rates of self-sensitized photodegradation were 5.70, 11.25 and 18.96 % for ·OH, 1O2 and \({\text{O}}_{2}^{ \cdot - }\), respectively. Primary transformation products of MEF were identified using ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF–MS). The identified transformation products suggested three possible pathways of MEF photodegradation: dehydrogenation, hydroxylation, and ketonized reactions. Toxicity of phototransformation products were evaluated using the Microtox test, which revealed that photodegradation likely provides a critical pathway for MEF toxicity reduction in drinking water and wastewater treatment facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aranami K, Readman JW (2007) Photolytic degradation of triclosan in freshwater and seawater. Chemosphere 66:1052–1056. doi:10.1016/j.chemosphere.2006.07.010

    Article  CAS  Google Scholar 

  • Boreen AL, Edhlund BL, Cotner JB, McNeill K (2008) Indirect photodegradation of dissolved free amino acids: the contribution of singlet oxygen and the differential reactivity of DOM from various sources. Environ Sci Technol 42(15):5492–5498. doi:10.1021/es800185d

    Article  CAS  Google Scholar 

  • Chen Y, Hu C, Qu J, Yang M (2008) Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation. J Photochem Photobiol A Chem 197:81–87. doi:10.1016/j.jphotochem.2007.12.007

    Article  CAS  Google Scholar 

  • Chen P, Lv WY, Chen ZM, Ma JS, Li RB, Yao K, Liu GG, Li FH (2015) Phototransformation of mefenamic acid induced by nitrite ions in water: mechanism, toxicity, and degradation pathways. Environ Sci Pollut Res. doi:10.1007/s11356-015-4537-0

    Google Scholar 

  • Cogan S, Haas Y (2008) Self-sensitized photo-oxidation of para-indenylidene–dihydropyridine derivatives. J Photochem Photobiol A 193:25–32. doi:10.1016/j.jphotochem.2007.06.003

    Article  CAS  Google Scholar 

  • Fishbein JC, McClelland RA (1996) Halide ion trapping of nitrenium ions formed in the Bamberger rearrangement of N-arylhydroxylamines. Lifetime of the parent phenylnitrenium ion in water. Can J Chem 74:1321–1328. doi:10.1139/v01-178

    Article  CAS  Google Scholar 

  • Ge L, Chen J, Wei X, Zhang S, Qiao X, Cai X, Xie Q (2010) Aquatic photochemistry of fluoroquinolone antibiotics: kinetics, pathways, and multivariate effects of main water constituents. Environ Sci Technol 44(7):2400–2405. doi:10.1021/es902852v

    Article  CAS  Google Scholar 

  • Hilton MJ, Thomas KV (2003) Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry. Chromatography 1015:129–141. doi:10.1016/S0021-9673(03)01213-5

    Article  CAS  Google Scholar 

  • Ji Y, Zeng C, Ferronato C, Chovelon JM, Yang X (2012) Nitrate-induced photodegradation of atenolol in aqueous solution: kinetics, toxicity and degradation pathways. Chemosphere 88:644–649. doi:10.1016/j.chemosphere.2012.03.050

    Article  CAS  Google Scholar 

  • Ji Y, Zhou L, Ferronato C, Yang X, Salvador A, Zeng C, Chovelon JM (2013) Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: kinetics, intermediates and degradation pathways. J Photochem Photobiol A 254:35–44. doi:10.1016/j.jphotochem.2013.01.003

    Article  CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36:5013–5022. doi:10.1016/S0043-1354(02)00227-0

    Article  CAS  Google Scholar 

  • Moll R, Derry S, Moore RA, McQuay HJ (2011) Single dose oral mefenamic acid for acute postoperative pain in adults. Cochrane Database Syst Rev. doi:10.1002/14651858

    Google Scholar 

  • Sein MM, Zedda M, Tuerk J, Schmidt TC, Golloch A, Sonntag CV (2008) Oxidation of diclofenac with ozone in aqueous solution. Environ Sci Technol 42:6656–6662. doi:10.1021/es8008612

    Article  CAS  Google Scholar 

  • Soufan M, Deborde M, Legube B (2012) Aqueous chlorination of diclofenac: kinetic study and transformation products identification. Water Res 46:3377–3386. doi:10.1016/j.watres.2012.03.056

    Article  CAS  Google Scholar 

  • Suwalsky M, Manrique-Moreno M, Howe J, Brandenburg K, Villena F (2011) Molecular interactions of mefenamic acid with lipid bilayers and red blood cells. J Braz Chem Soc 22:2243–2249. doi:10.1590/S0103-50532011001200002

    Article  CAS  Google Scholar 

  • Tauxe-Wuersch A, De Alencastro LF, Grandjean D, Tarradellas J (2005) Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res 39:1761–1772. doi:10.1016/j.watres.2005.03.003

    Article  CAS  Google Scholar 

  • von Sonntag C (2006) Free-radical-induced DNA damage and its repair. Springer, Berlin

    Book  Google Scholar 

  • Werner JJ, McNeill K, Arnold WA (2005) Environmental photodegradation of mefenamic acid. Chemosphere 58:1339–1346. doi:10.1016/j.chemosphere.2004.10.004

    Article  CAS  Google Scholar 

  • Yamamoto H, Nakamura Y, Moriguchi S, Nakamura Y, Honda Y, Tamura I, Sekizawa J (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res 43:351–362. doi:10.1016/j.watres.2008.10.039

    Article  CAS  Google Scholar 

  • Yang X, Chen F, Meng F, Xie Y, Chen H, Young K, Fu W (2013) Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environ Sci Pollut Res 20(8):5864–5875. doi:10.1007/s11356-013-1641-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21377031), the Scientific and Technical Projects of Guangdong Province (No. 2013B020800009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Guang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Wang, F.L., Yao, K. et al. Photodegradation of Mefenamic Acid in Aqueous Media: Kinetics, Toxicity and Photolysis Products. Bull Environ Contam Toxicol 96, 203–209 (2016). https://doi.org/10.1007/s00128-015-1680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-015-1680-8

Keywords

Navigation