Skip to main content
Log in

Coupled plasma filtration adsorption

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Background

Severe sepsis and septic shock are perhaps the major cause of morbidity and mortality in Intensive Care. Their pathogenesis is only partly understood. Circulating peptides and lipid-derived substances (so-called mediators), however, appear to participate in the development of organ dysfunction. It might be possible to treat plasma in such a way that the injurious effect of mediators can be attenuated.

Investigations

Several ex vivo studies have shown that it is technically possible to adsorb mediators by means of specially developed sorbents. The application of these sorbents to the treatment of plasma in animals with experimental sepsis has shown that several markers of inflammation can be attenuated and that animal survival can be increased. We have recently transferred such technology to the treatment of human septic shock using a technique called Coupled Plasma Filtration Adsorption (CPFA). CPFA was found to attenuate the hypotension of septic shock and to dramatically alter the immuno-paralytic toxicity of septic plasma. Monocytes of patients treated with CPFA underwent a major improvement in their ability to respond to endotoxin.

Conclusions

CPFA represents a promising new approach to blood purification in sepsis. The findings associated with its application to humans highlight the importance of continuing to investigate blood purification as a possible approach to the treatment of septic shock, the potential usefulness of the humoral theory of sepsis, and the dominant state of immunosuppression associated with established septic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Camussi G, Montrucchio G, Diminioni L, et al (1995) Septic shock: the unravelling of molecular mechanisms. Nephrol Dial Transplant 10:1808–1813

    CAS  PubMed  Google Scholar 

  2. Pinsky MR (2001) Sepsis: a pro and anti-inflammatory disequilibrium syndrome. Contrib Nephrol 132:354–366

    CAS  PubMed  Google Scholar 

  3. Bellomo R, Ronco C (1998) Indications and criteria for initiating renal replacement therapy in the intensive care unit. Kidney Int 53[Suppl 66]:S106–S109

  4. Liano F, Junco E, Pascual J, Madero R, Verde E, and the Madrid Acute Renal Failure Study Group (1998) The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. Kidney Int 53[Suppl 66]:S16–S24

  5. Brivet FG, Kleinknecht DJ, Liorat P, Landais PJM (1996) Acute renal failure in intensive care units—causes, outcome, and prognostic factors of hospital mortality: a prospective, multicenter study. Crit Care Med 24:192–198

    Google Scholar 

  6. Morrison DC, Ulevitch RY (1987) The effects of bacterial endotoxin on host mediator system. Am J Pathol 93:527–617

    Google Scholar 

  7. Glauser MP, Zanetti G, Baumgartner JD, Cohen J (1991) Septic shock: pathogenesis. Lancet 338:732–736

    CAS  PubMed  Google Scholar 

  8. Zeni F, Freeman B, Nathanson C (1997) Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med 25:1095–1100

    CAS  PubMed  Google Scholar 

  9. Bernard GR, Vincent J-L, Laterre P-F, et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    CAS  PubMed  Google Scholar 

  10. Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM (1991) Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 88:1747–1754

    CAS  PubMed  Google Scholar 

  11. Randow F, Syrbe U, Meisel C, Krausch D, Zuckermann H, Platzer C, Volk HD (1995) Mechanism of endotoxin desensitization: involvement of interleukin-10 and transforming growth factor beta. J Exp Med 181:1887–1892

    CAS  PubMed  Google Scholar 

  12. Gutierrez-Ramos JC, Bluethmann H (1997) Molecules and mechanisms operating in septic shock: lessons from knockout mice. Immunol Today 18:329–334

    Article  CAS  PubMed  Google Scholar 

  13. Astiz M, Saha D, Lusader D, Lin R, Rackow E (1996) Monocyte response to bacterial toxins, expression of cell surface receptors, and release of anti-inflammatory cytokines during sepsis. J Lab Clin Med 128:594–600

    CAS  PubMed  Google Scholar 

  14. Wang H, Bloom O, Zhang M, et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    CAS  PubMed  Google Scholar 

  15. Fink MP (2001) Cytopathic hypoxia: mitochondrial dysfunction as a mechanism contributing to organ dysfunction in sepsis. Crit Care Clin 17:219–237

    CAS  PubMed  Google Scholar 

  16. Volk HD, Reinke P, Krausch D, Zuckermann H, Asadullah K, Mueller Jm, Doecke WD, Kox WJ (1996) Monocyte deactivation: rationale for a new therapeutic strategy in sepsis. Intensive Care Med[Suppl 4]:S474–481

  17. Brandtzaeg P, Osnes L, Ovstebo R, Joo GB, Westvik A-B, Kierulf P (1996) Net inflammatory capacity of human septic shock plasma evaluated by a monocyte-based target cell assay: identification of interleukin-10 as a major functional deactivator of human monocytes. J Exp Med 184:51–60

    CAS  PubMed  Google Scholar 

  18. Adib-Conquy M, Adrie C, Moine P, Asehnoune K, Fitting C, Pinsky MR, Dhainaut JF, Cavaillon JM (2000) NF-kappaB expression in mononuclear cells of patients with sepsis resembles that observed in lipopolysaccharide tolerance. Am J Respir Crit Care Med 162:1877–1883

    CAS  PubMed  Google Scholar 

  19. Bellomo R, Tipping P, Boyce N (1993) Continuous veno-venous hemofiltration with dialysis removes cytokines from the circulation of septic patients. Crit Care Med 21:522–526

    CAS  PubMed  Google Scholar 

  20. Hoffmann JN, Hartl WH, Deppisch R, Faist E, Jochum M, Inthorn D (1995) Hemofiltration in human sepsis: evidence for elimination of immunomodulatory substances. Kidney Int 48:1563–1570

    CAS  PubMed  Google Scholar 

  21. De Vriese AS, Colardyn FA, Philippe JJ, et al (1999) Cytokine removal during continuous veno-venous hemofiltration in septic patients. J Am Soc Nephrol 10:846–853

    PubMed  Google Scholar 

  22. De Vriese AS, Vanholder RC, Pascual M, et al (1999) Can inflammatory cytokiens be removed efficiently by continuous renal replacement therapies? Intensive Care Med 25:903–910

    Google Scholar 

  23. Cole L, Bellomo R, Hart G, Journois D, Davenport P, Tipping P, Ronco C (2002) A phase II randomized controlled trial of continuous hemofiltration in sepsis. Crit Care Med 30:100–106

    CAS  PubMed  Google Scholar 

  24. Bellomo R, Baldwin I, Cole L, Ronco C (1998) Preliminary experience with high-volume hemofiltration in human septic shock. Kidney Int 53[Suppl 66]:S182–S185

    Google Scholar 

  25. Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, La Greca G (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356:26–30

    CAS  PubMed  Google Scholar 

  26. Honore PM, Jamez J, Wauthier M, et al (2000) Prospective evaluation of short-term high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28:3581–3587

    Google Scholar 

  27. Uchino S, Bellomo R, Goldsmith D, Davenport P, Cole L, Baldwin I, Panagiotopoulos S, Tipping P (2002) Super high flux haemofiltration: a new technique for cytokine removal. Intensive Care Med 28:651–655

    Article  Google Scholar 

  28. Reeves JH, Butt WW, Shann F, et al (1999) Continuous plasmafiltration in sepsis syndrome. Crit Care Med 27:2096–2104

    CAS  Google Scholar 

  29. Busund R, Koukline V, Utrobin U, Nedashkovsky E (2002) Plasmapheresis in severe sepsis and septic shock: a prospective randomised controlled trial. Intensive Care Med 28:1434–1439

    Article  Google Scholar 

  30. La Greca G, Brendolan A, Ghezzi PM, De Smet R, Tetta C, Gervasio R, Ronco C (1998) The concept of sorbents in hemodialysis. Int J Artif Organs 21:303–308

    PubMed  Google Scholar 

  31. Doig GS, Martin CM, Sibbald WJ (1997) Polymyxin-dextran antiendotoxin pretreatment in an ovine model of normotensive sepsis. Crit Care Med 25:1956–1961

    CAS  PubMed  Google Scholar 

  32. Lonergan JM, Orlowski JP, Sato T, McHugh MJ, Zborowski M (1994) Extracorporeal endotoxin removal in a canine model of septic shock. ASAIO J 40:M654–M657

    CAS  PubMed  Google Scholar 

  33. Nagaki M, Hughes RD, Lau JYN, Williams R (1991) Removal of endotoxin and cytokines by adsorbents and the effect of plasma protein binding. Int J Artif Organs 14:43–50

    CAS  PubMed  Google Scholar 

  34. Nakamura T, Suzuki Y, Shimada N, Ebihara I, Shoji H, Koide H (1998) Hemoperfusion with polymyxin B-immobilized fiber attenuates the increased plasma levels of thrombomodulin and von Willebrand factor from patients with septic shock. Blood Purif 16:179–186

    Article  CAS  PubMed  Google Scholar 

  35. Sato T, Orlowski JP, Zborowski M (1993) Experimental study of extracorporeal perfusion for septic shock. ASAIO J 39:M790–793

    CAS  PubMed  Google Scholar 

  36. Nakamura T, Ushiyama C, Suzuki S, Shoji H, Shimada N, Ebihara I, Koide H (2000) Polymyxin B-immobilized fiber reduces increased plasma endothelin-1 concentrations in hemodialysis patients with sepsis. Ren Fail 22:225–234

    Article  CAS  PubMed  Google Scholar 

  37. Tetta C, Cavaillon JM, Schulze M, Ronco C, Ghezzi PM, Camussi G, Serra AM, Curti F, Lonnemann G (1988) Removal of cytokines and activated complement components in an experimental model of continuous plasmafiltration coupled with sorbent adsorption. Nephrol Dial Transplant 13:1458–1464

    Article  Google Scholar 

  38. Tetta C, Gianotti L, Cavaillon Jm, Wratten Ml, Fini M, Braga M, Bisagni P, Giavaresi Gl, Bolzani R, Giardino R (2000) Coupled plasmafiltration-adsorption in a rabbit model of endotoxic shock. Crit Care Med 28:1526–1533

    CAS  PubMed  Google Scholar 

  39. Ronco C. Brendolan A, Lonnemann G, Bellomo R, Piccinni P, Digito A, Dan M, Irone M, La Greca G, Inguaggiato P, Maggiore U, De Nitti C, Tetta C (2002) A randomized cross-over study of coupled plasma filtration with adsorption in septic shock. Crit Care Med 30:1250–1255

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinaldo Bellomo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellomo, R., Tetta, C. & Ronco, C. Coupled plasma filtration adsorption. Intensive Care Med 29, 1222–1228 (2003). https://doi.org/10.1007/s00134-003-1796-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-003-1796-x

Keywords

Navigation