Skip to main content
Log in

The impact of lactate-buffered high-volume hemofiltration on acid-base balance

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To evaluate the effect of high-volume hemofiltration (HVHF) with lactate-buffered replacement fluids on acid-base balance.

Design

Randomized crossover study.

Setting

Intensive Care Unit of Tertiary Medical Center

Participants

Ten patients with septic shock and acute renal failure.

Interventions

Random allocation to 8 h of isovolemic high-volume hemofiltration (ultrafiltration rate: 6 l/h) or 8 h of isovolemic continuous venovenous hemofiltration (ultrafiltration rate: 1 l/h) with lactate-buffered replacement fluid with subsequent crossover.

Measurements and results

We measured blood gases, electrolytes, albumin, and lactate concentrations and completed quantitative biophysical analysis of acid-base balance changes. Before high-volume hemofiltration, patients had a slight metabolic alkalosis [pH: 7.42; base excess (BE) 2.4 mEq/l] despite hyperlactatemia (lactate: 2.51 mmol/l). After 2 h of high-volume hemofiltration, the mean lactate concentration increased to 7.30 mmol/l (p=0.0001). However, a decrease in chloride, strong ion difference effective, and strong ion gap (SIG) compensated for the effect of iatrogenic hyperlactatemia so that the pH only decreased to 7.39 (p=0.05) and the BE to −0.15 (p=0.001). After 6 h, despite persistent hyperlactatemia (7 mmol/l), the pH had returned to 7.42 and the BE to 2.45 mEq/l. These changes remained essentially stable at 8 h. Similar but less intense changes occurred during continuous venovenous hemofiltration.

Conclusions

HVHF with lactate-buffered replacement fluids induces iatrogenic hyperlactatemia. However, such hyperlactatemia only has a mild and transient acidifying effect. A decrease in chloride and strong ion difference effective and the removal of unmeasured anions all rapidly compensate for this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Davenport A. (1999) Anionic bases for continuous forms of renal replacement therapy (CRRT) in the ICU. Intensive Care Med 25:1209–1211

    Article  CAS  PubMed  Google Scholar 

  2. Heering P, Ivens K, Thumer O, Morgera S, Heintzen M, Passlick-Deetjen J, Willers R, Strauer BE, Grabensee B (1999) The use of different buffers during continuous hemofiltration in critically ill patients with acute renal failure. Intensive Care Med 25:1244–1251

    CAS  PubMed  Google Scholar 

  3. Heering P, Ivens K, Thumer O, Brause M, Grabensee B (1999) Acid-base balance and substitution fluid during continuous hemofiltration. Kidney Int 56 [Suppl 72]:37–40

  4. Davenport A, Will EJ, Davison AM (1991) Hyperlactatemia and metabolic acidosis during hemofiltration using lactate buffered fluids. Nephron 59:461–465

    CAS  PubMed  Google Scholar 

  5. Hilton PJ, Taylor J, Forni LG, Treacher DF (1998) Bicarbonate based hemofiltration in the management of acute renal failure with lactic acidosis. Q J Med 91:279–283

    Article  CAS  Google Scholar 

  6. Thomas AN, Guy JM, Kishen R, Bowles BMJ, Vadgama P (1997) Comparison of lactate and bicarbonate buffered hemofiltration fluids: use in critically ill patients. Nephrol Dial Transplant 12:1212–1217

    Article  CAS  PubMed  Google Scholar 

  7. Davenport A, Worth DP, Will EJ (1988) Hypochloremic alkalosis after high flux continuous hemofiltration and continuous arterio-venous hemofiltration with dialysis. Lancet 1:658

    CAS  PubMed  Google Scholar 

  8. Grootendorst, A.F., van Bommel, E.F.H., van der Hoven, B., van Leengoed LA, van Osta AL (1992) High volume hemofiltration improves right ventricular function in endotoxin-induced shock in the pig. Intensive Care Med 18:235–240

    CAS  PubMed  Google Scholar 

  9. Grootendorst, A.F., van Bommel, E.F.H., Leengoed, L.A.M.G., van Zanten AR, Huipen HJ, Groeneveld AB (1993) Infusion of ultrafiltrate from endotoxemic pigs depresses myocardial performance in normal pigs. J Crit Care 8:161–169

    CAS  PubMed  Google Scholar 

  10. Cole L, Bellomo R, Journois D, Davenport P, Baldwin I, Tipping P (2001) High volume hemofiltration in human septic shock. Intensive Care Med 27:978–986

    CAS  PubMed  Google Scholar 

  11. Levraut J, Ciebera J-P, Jambou P, Ichai C, Labib Y, Grimaud D (1997) Effect of continuous veno-venous hemofiltration with dialysis on lactate clearance in critically ill patients. Crit Care Med 25:58–62

    CAS  PubMed  Google Scholar 

  12. Bellomo R. Ronco C (1999) New paradigms in acid-base physiology. Current Opinion Crit Care 5:427–428

    Article  Google Scholar 

  13. Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1442–1443

    Google Scholar 

  14. Figge J, Mydosh T, Fencl V (1992) Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med 120:713-719

    CAS  PubMed  Google Scholar 

  15. Gilfix BM, Bique M, Magder S (1993) A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 81:187–197

    Google Scholar 

  16. American College of Chest Physicians/Society of Critical Care Medicine Consensus Committee (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1658–1662

    Google Scholar 

  17. Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, La Greca G (2000) Effect of different doses in CVVH on outcomes of acute renal failure: a prospective randomized trial. Lancet 356:26–30

    CAS  PubMed  Google Scholar 

  18. Liskaser F, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B, Letis A, Bennett M (2000) Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis. Anesthesiology 93:1170–1173

    CAS  PubMed  Google Scholar 

  19. Hayhoe M, Bellomo R, Liu G, Kellum JA, McNicol L, Buxton B (1999) The etiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygelin pump prime. Intensive Care Med 25:680–685

    CAS  PubMed  Google Scholar 

  20. Figge JF, Jabor A, Kazda A, Fencl V (1998) Anion gap and hypoalbuminemia. Crit Care Med 26:1807–1809

    CAS  PubMed  Google Scholar 

  21. Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as a measure of a non-respiratory acid-base disturbance. Acta Anesthesiol Scand 39:123–128

    Google Scholar 

  22. Cerosimo E, Molina PE, Abumrad NN (1998) Renal lactate metabolism and gluconeogenesis during insulin-induced hypoglycemia. Diabetes 47:1101–1106

    CAS  PubMed  Google Scholar 

  23. Cerosimo E, Garlick P, Ferretti J (2000) Renal substrate metabolism and gluconeogenesis during hypoglycemia in humans. Diabetes 49:1186–1193

    PubMed  Google Scholar 

  24. Guth H-J, Zschiesche M, Panzig E, Rudolph PE, Jager B, Kraatz G (1999) Which organic acids does hemofiltrate contain in the presence of acute renal failure? Int J Artif Organs 22:805–810

    Google Scholar 

  25. Kirschbaum B (1999) Sulfate regulation: native kidney vs dialysis. Int J Artif Organs 22:591–592

    Google Scholar 

  26. Nimmo GR, Mackenzie SJ, Walker S, Nicol M, Grant IS (1993) Acid-base responses to high volume hemofiltration in the critically ill. Nephrol Dial Transplant 8:854–857

    CAS  PubMed  Google Scholar 

  27. Macias WL (1996) Choice of replacement fluid/dialysate anion in continuous renal replacement therapy. Am J Kidney Dis 28 [Suppl III]: 15–20

  28. Morgera S, Heering P, Szentandrasi T, Manassa E, Heitzen M, Willers B, Passlick-Deetjen J, Grabensee B (1997) Comparison of a lactate versus acetate based hemofiltration replacement fluid in patients with acute renal failure. Ren Fail 19:155–164

    CAS  PubMed  Google Scholar 

  29. Laude-Sharp M, Caroff M, Simard L, Pusineri C, Kazatchkine MD, Haeffner-Cavaillon N (1990) Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS). Kidney Int 38:10089–1094

    Google Scholar 

  30. Honore PM, Jamez J, Wauthier M, Lee P, Dugernier T, Pirenne B, Hanique G, Matson JR (2000) Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28:3581–3587

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinaldo Bellomo.

Additional information

This study was supported by the Austin Hospital Anaesthesia and Intensive Care Trust Fund (Melbourne, Australia), the Laerdal Foundation (Stavanger, Norway) and Hospal Pty. Ltd. (Lyon, France).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, L., Bellomo, R., Baldwin, I. et al. The impact of lactate-buffered high-volume hemofiltration on acid-base balance. Intensive Care Med 29, 1113–1120 (2003). https://doi.org/10.1007/s00134-003-1812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-003-1812-1

Keywords

Navigation