Skip to main content

Advertisement

Log in

The haemodynamic and metabolic effects of epinephrine in experimental hyperdynamic septic shock

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To study the effect of epinephrine (EPI) infusion on vital organ blood flow and metabolic variables during sepsis.

Design and setting

Randomised placebo-controlled animal trial in an animal laboratory.

Animals

Seven merino cross-ewes.

Interventions

Chronic implantation of flow probes (aorta, renal, mesenteric and coronary artery and sagittal sinus). Induction of sepsis by intravenous injection of E. coli. Random allocation of sheep to EPI (0.4 µg kg−1 min−1) or vehicle for 6 h.

Measurements and results

E. coli induced hypotension and hyperlactataemia and increased cardiac output, renal, mesenteric and coronary blood flows. Compared to vehicle, EPI restored mean arterial blood pressure (69 vs. 86 mmHg) and further increased cardiac output (6.4 vs. 7.1 l/min). EPI, however, decreased renal blood flow (330 vs. 247 ml/min) and renal conductance. EPI also reduced mesenteric and coronary conductance without changes in flows. Compared to vehicle, EPI increased urine output (293 vs. 544 ml/6 h) but not creatinine clearance. EPI increased lactate (1.8 vs. 15.7 mmol/l) with accompanying acidosis (serum bicarbonate: 25.2 vs. 15.7 mmol/l), hyperglycaemia (2.6 vs. 13.5 mmol/l) and hypokalaemia (4.3 vs. 3.0 mmol/l).

Conclusions

Hyperdynamic sepsis increased blood flow to heart, gut and kidney. Although EPI infusion further increased cardiac output, blood pressure and myocardial performance, it was also associated with potent metabolic effects, decreased mesenteric, coronary and renal conductance and a significant reduction in renal blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moran JL, O’Fathartaigh MS, Peisach AR et al (1993) Epinephrine as an inotropic agent in septic shock: a dose-profile analysis. Crit Care Med 21:70–77

    Google Scholar 

  2. Bollaert PE, Bauer P, Audibert G. Lambert H, Larcan A (1990) Effects of epinephrine on haemodynamics and oxygen metabolism in dopamine resistant septic shock. Chest 98:949–953

    CAS  PubMed  Google Scholar 

  3. Lipman J, Roux A, Kraus P (1991) Vasoconstrictor effects of adrenaline in human septic shock. Anaesth Intensive Care 19:61–65

    Google Scholar 

  4. Mackenzie SJ, Kapadia F, Nimmo GR, Armstrong IR, Grant IS (1991) Adrenaline in treatment of septic shock: effects on hemodynamics and oxygen transport. Intensive Care Med 17:36–39

    Google Scholar 

  5. Day NPJ, Phu NH, Bethell DP, Mai NTH, Chau TTH, Hien TT, White NJ (1996) The effects of dopamine and adrenaline infusions on acid-base balance and systemic haemodynamics in severe infection. Lancet 348:219–223

    Google Scholar 

  6. Meier-Hellmann A, Reinhart K (1995) Effects of catecholamines on regional perfusion and oxygenation in critically ill patients. Acta Anaesthesiol Scand 39 [Suppl 107]:239–248

    Google Scholar 

  7. Rudis MI, Basha MA, Zarowitz BJ (1996) Is it time to reposition vasopressors and inotropes in sepsis? Crit Care Med 24:525–537

    Google Scholar 

  8. Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25:399–404

    Article  CAS  PubMed  Google Scholar 

  9. Levy B, Bollaert PE, Charpentier C, Nace L, Audibert G, Bauer P, Nabet P, Larcan A (1997) Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate, metabolism and gastric tonometry variables in septic shock: a prospective, randomised study. Intensive Care Med 23:282–287

    Article  CAS  PubMed  Google Scholar 

  10. Grant DA, Franzini C, Wild J, Walker AM (1995) Continuous measurement of blood flow in the superior sagittal sinus of the lamb. Am J Physiol 269:R274–279

    Google Scholar 

  11. Bednarik JA, May CN (1995) Evaluation of a transit-time system for the chronic measurement of blood flow in conscious sheep. J Appl Physiol 78:524–530

    Google Scholar 

  12. Matthews JNS, Altman DG, Campbell MJ et al (1990) Analysis of serial measurements in medical research. BMJ 300:230–235

    CAS  PubMed  Google Scholar 

  13. Day NP, Phu NH, Mai NTH, et al (2000) Effects of dopamine and epinephrine infusions on renal hemodynamics in severe malaria and severe sepsis. Crit Care Med 28:1353–1362

    Google Scholar 

  14. Bersten AD, Rutten AJ (1995) Renovascular interaction of epinephrine, dopamine, and intraperitoneal sepsis. Crit Care Med 23:537–544

    Google Scholar 

  15. Pawlik W, Sheperd AP, Jacobson ED (1975) Effect of vasoactive agents on intestinal oxygen consumption and blood flow in dogs. J Clin Invest 56:484–490

    Google Scholar 

  16. Sheperd AP, Pawlik W, Mailman D, Burks TF, Jacobson ED (1976) Effects of vasoconstrictors on intestinal vascular resistance and oxygen extraction. Am J Physiol 230:298–303

    Google Scholar 

  17. Bersten AD, Hersch M, Cheung H, Rutledge FS, Sibbald WJ (1992) The effect of various sympathomimetics on the regional circulation in hyperdynamic sepsis. Surgery 112:549–561

    Google Scholar 

  18. Breslow MJ, Miller CF, Parker SD, Walman AT, Traystman RJ (1987) Effect of vasopressors on organ blood flow during endotoxin shock in pigs. Am J Physiol 252:H291–H300

    Google Scholar 

  19. Cunnion RE, Schaer GL, Parker M, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73:637–644

    Google Scholar 

  20. Dhainaut J-F, Huyghebaert M-F, Monsallier JF et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541

    Google Scholar 

  21. Parker MM, Shelhamer JH, Bacharach SL et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    CAS  PubMed  Google Scholar 

  22. Lindberg L, Liao Q, Steen S (2000) The effects of epinephrine/norepinephrine on end tidal carbon dioxide concentration, coronary perfusion pressure and pulmonary arterial blood flow during cardiopulmonary resuscitation. Resuscitation 43:129–140

    Google Scholar 

  23. Lobato EB, Urdaneta F, Martin TD, Gravenstein N (2000) Effects of milrinone versus epinephrine on graded internal mammary artery flow after cardiopulmonary bypass. J Cardiothorac Vasc Anesth 14:9–11

    Google Scholar 

  24. Jett GK, Arcici JM, Dorsey LM, Hatcher CR Jr, Guyton RA (1988) Vasoactive drug effect on blood flow in internal mammary artery and saphenous vein grafts J Am Coll Cardiol 11:1317–1324

    Google Scholar 

  25. Myburgh JA, Upton RN, Grant C, Martinez A (1998) A comparison of the effects of norepinephrine, epinephrine, and dopamine on cerebral blood flow and oxygen utilization. Acta Neurochir Suppl (Wien) 71:19–21

    Google Scholar 

  26. Myburgh JA, Upton RN, Grant C, Martinez A (2002) The cerebrovascular effects of adrenaline, noradrenaline and dopamine infusions under propofol and isofluorane anaesthesia in sheep. Anaesth Intensive Care 30:725–733

    Google Scholar 

  27. Brockman RP (1991) Effects of epinephrine on the net hepatic uptake of lactate, pyruvate, and glycerol in sheep. Can J Physiol Pharmacol 69:475–479

    Google Scholar 

  28. Rizza R, Haymond M, Cryer P, Gerich JE (1979) Differential effects of epinephrine on glucose production and disposal in man. Am J Physiol 237:E356–E362

    Google Scholar 

  29. Issekutz B Jr (1985) Effect of epinephrine on carbohydrate metabolism in exercising dogs. Metabolism 34:457–464

    Google Scholar 

  30. Rizza R, Haymond M, Miles JM, Verdonk CA, Cryer P, Gerich JE (1980) Effect of alpha-adrenergic stimulation and its blockade on glucose turnover in man. Am J Physiol 238:E467–E472

    Google Scholar 

  31. Ribes G, Blayac JP, Loubatieres-Mariani MM (1983) Differences between the effects of adrenaline and noradrenaline on insulin secretion in the dog. Diabetologia 24:107–112

    Google Scholar 

  32. Berghe G van den, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  33. Brown MJ, Brown DC, Murphy MB (1983) Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med 309:1414–1419

    Google Scholar 

  34. Wahr JA, Parks R, Boisvert D, Comunale M, Fabian J, Ramsay J, Mangano DT (1999) Preoperative serum potassium levels and perioperative outcomes in cardiac surgery patients. Multicenter study of perioperative ischemia research group. JAMA 281:2203–2210

    Google Scholar 

  35. Kolendorf K, Moller B (1974) Lactic acidosis in epinephrine poisoning. Acta Med Scand 196:465–466

    Google Scholar 

  36. Totaro RJ, Raper RF (1997) Epinephrine-induced lactic acidosis following cardiopulmonary bypass. Crit Care Med 25:1693–1699

    Google Scholar 

  37. Levy B, Mansart A, Bollaert PE, Franck P, Maille JP (2003) Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism and organ energetics in endotoxemic rats. Intensive Care Med 29:292–300

    PubMed  Google Scholar 

  38. James JH, Luchette FA, McCarter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508

    Article  CAS  PubMed  Google Scholar 

  39. Leone M, Vallet B, Teboul JL, Mateo J, Bastien O, Martin C (2004) Survey of the use of catecholamines by French physicians. Intensive Care Med 30:984–988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive N. May.

Additional information

This study was supported by an institute grant (no. 983001) from the National Health & Medical Research Council of Australia and by grants from the Intensive Care Foundation of the Australian and New Zealand Intensive Care Society, the Laerdal Foundation (Norway) and the ARMC Anaesthesia and Intensive Care Trust Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giantomasso, D., Bellomo, R. & May, C.N. The haemodynamic and metabolic effects of epinephrine in experimental hyperdynamic septic shock. Intensive Care Med 31, 454–462 (2005). https://doi.org/10.1007/s00134-005-2580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-005-2580-x

Keywords

Navigation