Skip to main content

Advertisement

Log in

The nature and discriminatory value of urinary neutrophil gelatinase-associated lipocalin in critically ill patients at risk of acute kidney injury

  • Seven-Day Profile Publication
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Background

Different molecular forms of urinary neutrophil gelatinase-associated lipocalin (NGAL) have recently been discovered. We aimed to explore the nature, source and discriminatory value of urinary NGAL in intensive care unit (ICU) patients.

Methods

We simultaneously measured plasma NGAL (pNGAL), urinary NGAL (uNGAL), and estimated monomeric and homodimeric uNGAL contribution using Western blotting-validated enzyme-linked immunosorbent assays [uNGALE1 and uNGALE2] and their calculated ratio in 102 patients with the systemic inflammatory response syndrome and oliguria, and/or a creatinine rise of >25 μmol/L.

Measurements and main results

Bland–Altman analysis demonstrated that, despite correlating well (r = 0.988), uNGAL and uNGALE1 were clinically distinct, lacking both accuracy and precision (bias: 266.23; 95 % CI 82.03–450.44 ng/mg creatinine; limits of agreement: −1,573.86 to 2,106.32 ng/mg creatinine). At best, urinary forms of NGAL are fair (area under the receiver operating characteristic [AUROC] ≤0.799) predictors of renal or patient outcome; most perform significantly worse. The 44 patients with a primarily monomeric source of uNGAL had higher pNGAL (118.5 ng/ml vs. 72.5 ng/ml; p < 0.001), remaining significant following Bonferroni correction.

Conclusions

uNGAL is not a useful predictor of outcome in this ICU population. uNGAL patterns may predict distinct clinical phenotypes. The nature and source of uNGAL are complex and challenge the utility of NGAL as a uniform biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238

    Article  PubMed  CAS  Google Scholar 

  2. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543

    Article  PubMed  CAS  Google Scholar 

  3. Nickolas TL, O’Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, Buchen C, Khan F, Mori K, Giglio J, Devarajan P, Barasch J (2008) Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med 148:810–819

    Article  PubMed  Google Scholar 

  4. Bagshaw SM (2011) Subclinical acute kidney injury: a novel biomarker-defined syndrome. Crit Care Resusc 13:201–203

    PubMed  Google Scholar 

  5. Legrand M, Collet C, Gayat E, Henao J, Giraudeaux V, Mateo J, Launay JM, Payen D (2013) Accuracy of urine NGAL commercial assays in critically ill patients. Intensive Care Med 39:541–542

    Article  PubMed  Google Scholar 

  6. Zhang X, Gibson B Jr, Mori R, Snow-Lisy D, Yamaguchi Y, Campbell SC, Simmons MN, Daly TM (2012) Analytical and biological validation of a multiplex immunoassay for acute kidney injury biomarkers. Clin Chim Acta 415C:88–93

    Google Scholar 

  7. Xu SY, Petersson CG, Carlson M, Venge P (1994) The development of an assay for human neutrophil lipocalin (HNL)—to be used as a specific marker of neutrophil activity in vivo and vitro. J Immunol Methods 171:245–252

    Article  PubMed  CAS  Google Scholar 

  8. Dent CL, Ma Q, Dastrala S, Bennett M, Mitsnefes MM, Barasch J, Devarajan P (2007) Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care 11:R127

    Article  PubMed  Google Scholar 

  9. Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, Syed H, Ali S, Barasch J, Devarajan P (2008) Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol 3:665–673

    Article  PubMed  Google Scholar 

  10. Xu SY, Carlson M, Engstrom A, Garcia R, Peterson CG, Venge P (1994) Purification and characterization of a human neutrophil lipocalin (HNL) from the secondary granules of human neutrophils. Scand J Clin Lab Invest 54:365–376

    Article  PubMed  CAS  Google Scholar 

  11. Carlson M, Raab Y, Seveus L, Xu S, Hallgren R, Venge P (2002) Human neutrophil lipocalin is a unique marker of neutrophil inflammation in ulcerative colitis and proctitis. Gut 50:501–506

    Article  PubMed  CAS  Google Scholar 

  12. Cowland JB, Borregaard N (1997) Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45:17–23

    Article  PubMed  CAS  Google Scholar 

  13. Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A (2008) Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat 108:389–397

    Article  PubMed  CAS  Google Scholar 

  14. Cowland JB, Sorensen OE, Sehested M, Borregaard N (2003) Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. J Immunol 171:6630–6639

    PubMed  CAS  Google Scholar 

  15. Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, Kjeldsen L (1996) Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 38:414–420

    Article  PubMed  CAS  Google Scholar 

  16. Roudkenar MH, Kuwahara Y, Baba T, Roushandeh AM, Ebishima S, Abe S, Ohkubo Y, Fukumoto M (2007) Oxidative stress induced lipocalin 2 gene expression: addressing its expression under the harmful conditions. J Radiat Res 48:39–44

    Article  PubMed  CAS  Google Scholar 

  17. Cai L, Rubin J, Han W, Venge P, Xu S (2010) The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol 5:2229–2235

    Article  PubMed  CAS  Google Scholar 

  18. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432

    PubMed  CAS  Google Scholar 

  19. Blaser J, Triebel S, Tschesche H (1995) A sandwich enzyme immunoassay for the determination of neutrophil lipocalin in body fluids. Clin Chim Acta 235:137–145

    Article  PubMed  CAS  Google Scholar 

  20. Kjeldsen L, Koch C, Arnljots K, Borregaard N (1996) Characterization of two ELISAs for NGAL, a newly described lipocalin in human neutrophils. J Immunol Methods 198:155–164

    Article  PubMed  CAS  Google Scholar 

  21. Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P (2004) Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 24:307–315

    Article  PubMed  CAS  Google Scholar 

  22. Cai L, Borowiec J, Xu S, Han W, Venge P (2009) Assays of urine levels of HNL/NGAL in patients undergoing cardiac surgery and the impact of antibody configuration on their clinical performances. Clin Chim Acta 403:121–125

    Article  PubMed  CAS  Google Scholar 

  23. Martensson J, Xu S, Bell M, Martling CR, Venge P (2012) Immunoassays distinguishing between HNL/NGAL released in urine from kidney epithelial cells and neutrophils. Clin Chim Acta 413:1661–1667

    Article  PubMed  Google Scholar 

  24. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL (2008) Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34:17–60

    Article  PubMed  Google Scholar 

  25. Zavada J, Hoste E, Cartin-Ceba R, Calzavacca P, Gajic O, Clermont G, Bellomo R, Kellum JA (2010) A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transpl 25:3911–3918

    Article  CAS  Google Scholar 

  26. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P (2004) Acute renal failure: definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212

    Article  PubMed  Google Scholar 

  27. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A et al (1991) The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100:1619–1636

    Article  PubMed  CAS  Google Scholar 

  28. Calzavacca P, Tee A, Licari E, Schneider AG, Bellomo R (2012) Point-of-care measurement of serum creatinine in the intensive care unit. Ren Fail 34:13–18

    Article  PubMed  CAS  Google Scholar 

  29. Taylor R (1990) Interpretation of the correlation coefficient: a basic review. J Diagn Med Sonogr 1:35–39

    Article  Google Scholar 

  30. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

  31. Mantha S, Roizen MF, Fleisher LA, Thisted R, Foss J (2000) Comparing methods of clinical measurement: reporting standards for bland and altman analysis. Anesth Analg 90:593–602

    Article  PubMed  CAS  Google Scholar 

  32. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  PubMed  CAS  Google Scholar 

  33. Haase-Fielitz A, Bellomo R, Devarajan P, Story D, Matalanis G, Dragun D, Haase M (2009) Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery: a prospective cohort study. Crit Care Med 37:553–560

    Article  PubMed  CAS  Google Scholar 

  34. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, Bennett M, Devarajan P (2011) Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol 58:2301–2309

    Article  PubMed  CAS  Google Scholar 

  35. Tuladhar SM, Puntmann VO, Soni M, Punjabi PP, Bogle RG (2009) Rapid detection of acute kidney injury by plasma and urinary neutrophil gelatinase-associated lipocalin after cardiopulmonary bypass. J Cardiovasc Pharmacol 53:261–266

    Article  PubMed  CAS  Google Scholar 

  36. Wagener G, Gubitosa G, Wang S, Borregaard N, Kim M, Lee HT (2008) Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. Am J Kidney Dis 52:425–433

    Article  PubMed  CAS  Google Scholar 

  37. Xin C, Yulong X, Yu C, Changchun C, Feng Z, Xinwei M (2008) Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery. Ren Fail 30:904–913

    Article  PubMed  Google Scholar 

  38. Shapiro NI, Trzeciak S, Hollander JE, Birkhahn R, Otero R, Osborn TM, Moretti E, Nguyen HB, Gunnerson K, Milzman D, Gaieski DF, Goyal M, Cairns CB, Kupfer K, Lee SW, Rivers EP (2010) The diagnostic accuracy of plasma neutrophil gelatinase-associated lipocalin in the prediction of acute kidney injury in emergency department patients with suspected sepsis. Ann Emerg Med 56(52–59):e51

    Google Scholar 

  39. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54:1012–1024

    Article  PubMed  CAS  Google Scholar 

  40. Bagshaw SM, Bennett M, Haase M, Haase-Fielitz A, Egi M, Morimatsu H, D’Amico G, Goldsmith D, Devarajan P, Bellomo R (2010) Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med 36:452–461

    Article  PubMed  CAS  Google Scholar 

  41. de Geus HR, Bakker J, Lesaffre EM, le Noble JL (2011) Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. Am J Respir Crit Care Med 183:907–914

    Article  PubMed  Google Scholar 

  42. Doi K, Negishi K, Ishizu T, Katagiri D, Fujita T, Matsubara T, Yahagi N, Sugaya T, Noiri E (2011) Evaluation of new acute kidney injury biomarkers in a mixed intensive care unit. Crit Care Med 39:2464–2469

    Article  PubMed  CAS  Google Scholar 

  43. Endre ZH, Pickering JW, Walker RJ, Devarajan P, Edelstein CL, Bonventre JV, Frampton CM, Bennett MR, Ma Q, Sabbisetti VS, Vaidya VS, Walcher AM, Shaw GM, Henderson SJ, Nejat M, Schollum JB, George PM (2011) Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int 79:1119–1130

    Article  PubMed  CAS  Google Scholar 

  44. Kokkoris S, Parisi M, Ioannidou S, Douka E, Pipili C, Kyprianou T, Kotanidou A, Nanas S (2012) Combination of renal biomarkers predicts acute kidney injury in critically ill adults. Ren Fail 34:1100–1108

    Article  PubMed  CAS  Google Scholar 

  45. Martensson J, Bell M, Oldner A, Xu S, Venge P, Martling CR (2010) Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med 36:1333–1340

    Article  PubMed  CAS  Google Scholar 

  46. Siew ED, Ware LB, Gebretsadik T, Shintani A, Moons KG, Wickersham N, Bossert F, Ikizler TA (2009) Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults. J Am Soc Nephrol 20:1823–1832

    Article  PubMed  CAS  Google Scholar 

  47. Royakkers AA, Bouman CS, Stassen PM, Korevaar JC, Binnekade JM, van de Hoek W, Kuiper MA, Spronk PE, Schultz MJ (2012) Systemic and urinary neutrophil gelatinase-associated lipocalins are poor predictors of acute kidney injury in unselected critically ill patients. Crit Care Res Pract 2012:712695

    PubMed  Google Scholar 

  48. Cruz DN, de Cal M, Garzotto F, Perazella MA, Lentini P, Corradi V, Piccinni P, Ronco C (2010) Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med 36:444–451

    Article  PubMed  CAS  Google Scholar 

  49. Constantin JM, Futier E, Perbet S, Roszyk L, Lautrette A, Gillart T, Guerin R, Jabaudon M, Souweine B, Bazin JE, Sapin V (2010) Plasma neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in adult critically ill patients: a prospective study. J Crit Care 25(176):e171–e176

    Google Scholar 

  50. Vanmassenhove J, Vanholder R, Nagler E, Van Biesen W (2012) Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transpl 28(2):254–273

    Article  Google Scholar 

  51. Grenier FC, Ali S, Syed H, Workman R, Martens F, Liao M, Wang Y, Wong PY (2010) Evaluation of the ARCHITECT urine NGAL assay: assay performance, specimen handling requirements and biological variability. Clin Biochem 43:615–620

    Article  PubMed  CAS  Google Scholar 

  52. Haase M, Haase-Fielitz A, Bellomo R, Mertens PR, (2010) Neutrophil gelatinase-associated lipocalin as a marker of acute renal disease. Curr Opin Hematol

  53. Vaidya VS, Waikar SS, Ferguson MA, Collings FB, Sunderland K, Gioules C, Bradwin G, Matsouaka R, Betensky RA, Curhan GC, Bonventre JV (2008) Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci 1:200–208

    Article  PubMed  CAS  Google Scholar 

  54. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138

    Article  Google Scholar 

  55. Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, Hiesmayr M (2004) Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol 15:1597–1605

    Article  PubMed  CAS  Google Scholar 

  56. Levy MM, Macias WL, Vincent JL, Russell JA, Silva E, Trzaskoma B, Williams MD (2005) Early changes in organ function predict eventual survival in severe sepsis. Crit Care Med 33:2194–2201

    Article  PubMed  Google Scholar 

  57. Praught ML, Shlipak MG (2005) Are small changes in serum creatinine an important risk factor? Curr Opin Nephrol Hypertens 14:265–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Austin Hospital Intensive Care Trust Fund. The ELISA testing was funded by a grant from the Swedish Medical Research Council to Uppsala University.

Conflicts of interest

Shengyuan Xu holds patents with, and receives royalties from, Diagnostics Development. Per Venge holds patents with, and stock in, P&M Venge AB. He has received royalties from Phadia. The remaining authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinaldo Bellomo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90 kb)

Glossary

Glossary

NGAL:

Neutrophil gelatinase-associated lipocalin, also known as human neutrophil lipocalin [HNL]). Released from multiple tissues. Present in plasma and urine

Monomeric NGAL:

A 25-kD monomeric form of NGAL produced by both neutrophils and renal epithelium

Homodimeric NGAL:

A 45-kD homodimeric form of NGAL produced by neutrophils

Heterodimeric NGAL:

A 135-kD heterodimeric form of NGAL, covalently conjugated with gelatinase, produced by renal epithelium

pNGAL:

NGAL measured in the plasma using the triage point-of-care NGAL test (Alere)

uNGAL:

NGAL measured in the urine using the ARCHITECT platform (Abbott)

uNGALE1 :

NGAL in the urine measured by a research assay utilising monoclonal antibody clones m763/m764. Detects a proportion of all forms of NGAL in the urine

uNGALE2 :

NGAL in the urine measured by a research assay utilising monoclonal antibody clones m763/m765. Detects a fraction of homodimeric NGAL in the urine

uNGALE1:uNGALE2 ratio:

A ratio of NGAL detected in the urine by the research assays >50. Distinguishes monomeric from homodimeric NGAL with an AUROC of 0.92

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glassford, N.J., Schneider, A.G., Xu, S. et al. The nature and discriminatory value of urinary neutrophil gelatinase-associated lipocalin in critically ill patients at risk of acute kidney injury. Intensive Care Med 39, 1714–1724 (2013). https://doi.org/10.1007/s00134-013-3040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-013-3040-7

Keywords

Navigation