Skip to main content

Advertisement

Log in

Comparison of different equations to assess glomerular filtration in critically ill patients

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

To evaluate equations for estimation of glomerular filtration rate (GFR) and measured urinary creatinine clearance, compared to measured GFR in critically ill patients.

Methods

GFR was measured using inulin clearance. Multiple blood samples were collected per patient for determination of serum creatinine, cystatin C and inulin. GFR was estimated by the use of the following estimation equations (eGFR): four commonly used creatinine-based equations [Cockcroft–Gault, Modification of Diet in Renal Disease (both the short and long formula) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)], five cystatin C based estimation equations (Hoek, Larsson, Filler, Le Bricon, CKD-EPIcys) and one equation combining cystatin C and serum creatinine (CKD-EPIcr-cys). In addition we measured urinary creatinine clearance. Bias, precision and accuracy of all estimates were compared to those of the inulin clearance.

Results

Data were collected from 83 patients, of whom 68 were considered evaluable. The median age was 58 years [interquartile range (IQR) 39–68]. The median inulin clearance was 80 mL/min/1.73 m2 (IQR 31–114). Equations based on creatinine had much bias and poor precision and accuracy. Measured urinary creatinine clearances overestimated GFR. Equations based on cystatin C were free of bias, but also had limited precision and accuracy.

Conclusions

In this cohort of patients, estimates of GFR had low accuracy and precision. Cystatin C based formulas, especially CKD-EPIcr-cys, showed limited bias; however, the accuracy and precision of these estimates were still insufficient. Measured urinary creatinine clearance overestimates GFR, but may provide a cheap alternative, when this is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37:840–851

    Article  CAS  PubMed  Google Scholar 

  2. Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483

    Article  CAS  PubMed  Google Scholar 

  3. Lameire N, Hoste E (2004) Reflections on the definition, classification, and diagnostic evaluation of acute renal failure. Curr Opin Crit Care 10:468–475

    Article  PubMed  Google Scholar 

  4. Herrera-Gutierrez M, Seller-Perez G, Banderas-Bravo E, Munoz-Bono J, Lebron-Gallardo M, Fernandez-Ortega J (2007) Replacement of 24-h creatinine clearance by 2-h creatinine clearance in intensive care unit patients: a single-center study. Intensive Care Med 33:1900–1906

    Article  CAS  PubMed  Google Scholar 

  5. Stevens LA, Schmid CH, Greene T, Li L, Beck GJ, Joffe MM, Froissart M, Kusek JW, Zhang YL, Coresh J, Levey AS (2009) Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int 75:652–660

    Article  CAS  PubMed  Google Scholar 

  6. Knight EL, Verhave JC, Spiegelman D (2004) Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65:1416–1421

    Article  CAS  PubMed  Google Scholar 

  7. Royakkers AA, Korevaar JC, van Suijlen JD, Hofstra LS, Kuiper MA, Spronk PE, Schultz MJ, Bouman CS (2011) Serum and urine cystatin C are poor biomarkers for acute kidney injury and renal replacement therapy. Intensive Care Med 37:493–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hasslacher J, Lehner GF, Joannidis M (2012) Insufficient performance of serum cystatin C as a biomarker for acute kidney injury of postrenal etiology. Intensive Care Med 38:170–171

    Article  PubMed  Google Scholar 

  9. Bragadottir G, Redfors B, Ricksten SE (2013) Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury—true GFR versus urinary creatinine clearance and estimating equations. Crit Care 17:R108

    Article  PubMed Central  PubMed  Google Scholar 

  10. Erley CM, Bader BD, Berger ED, Vochazer A, Jorzik JJ, Dietz K, Risler T (2001) Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients. Crit Care Med 29:1544–1550

    Article  CAS  PubMed  Google Scholar 

  11. Wharton WW, Sondeen JL, McBiles M, Gradwohl SE, Wade CE, Ciceri DP, Lehmann HG, Stotler RE, Henderson TR, Whitaker WR et al (1992) Measurement of glomerular filtration rate in ICU patients using 99mTc-DTPA and inulin. Kidney Int 42:174–178

    Article  PubMed  Google Scholar 

  12. Delanaye P, Cavalier E, Morel J, Mehdi M, Maillard N, Claisse G, Lambermont B, Dubois B, Damas P, Krzesinski J-M, Lautrette A, Mariat C (2014) Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C versus serum creatinine. BMC Nephrol 15:9

    Article  PubMed Central  PubMed  Google Scholar 

  13. Baptista J, Udy A, Sousa E, Pimentel J, Wang L, Roberts J, Lipman J (2011) A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care 15:R139

    Article  PubMed Central  PubMed  Google Scholar 

  14. Udy AA, Morton FJ, Nguyen-Pham S, Jarrett P, Lassig-Smith M, Stuart J, Dunlop R, Starr T, Boots RJ, Lipman J (2013) A comparison of CKD-EPI estimated glomerular filtration rate and measured creatinine clearance in recently admitted critically ill patients with normal plasma creatinine concentrations. BMC Nephrol 14:250

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kirwan CJ, Philips BJ, Macphee IA (2013) Estimated glomerular filtration rate correlates poorly with four-hour creatinine clearance in critically ill patients with acute kidney injury. Crit Care Res Pract 2013:406075

    PubMed Central  PubMed  Google Scholar 

  16. Hoste EA, Damen J, Vanholder RC, Lameire NH, Delanghe JR, Van den Kristof H, Colardyn FA (2005) Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transplant 20:747–753

    Article  CAS  PubMed  Google Scholar 

  17. Conil JM, Georges B, Fourcade O, Seguin T, Lavit M, Samii K, Houin G, Tack I, Saivin S (2007) Assessment of renal function in clinical practice at the bedside of burn patients. Br J Clin Pharmacol 63:583–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Minville V, Asehnoune K, Ruiz S, Breden A, Georges B, Seguin T, Tack I, Jaafar A, Saivin S, Fourcade O, Samii K, Conil JM (2011) Increased creatinine clearance in polytrauma patients with normal serum creatinine: a retrospective observational study. Crit Care 15:R49

    Article  PubMed Central  PubMed  Google Scholar 

  19. Van Eynde R, Vanthuyne S, Lameire N, Delanghe J, Decruyenaere J, Hoste E (2005) Assessment of renal function in critically ill patients. Intensive Care Med 31(Suppl 1):S85 abstract

    Google Scholar 

  20. Picavet S, Vanthuyne S, Van Eynde R, Lameire N, Delanghe J, Hoste E (2006) Assessment of kidney function in ICU patients. Crit Care 10(Suppl 1):P276 abstract

    Article  PubMed Central  Google Scholar 

  21. Janssen A, Dumoulin A, De Waele J, Vanholder R, Waterloos M, Hoste E (2010) Assessment of increased glomerular filtration rate in ICU patients. Intensive Care Med 36(Suppl 2):S402 abstract

    Google Scholar 

  22. Bjornsson TD (1979) Use of serum creatinine concentrations to determine renal function. Clin Pharmacokinet 4:200–222

    Article  CAS  PubMed  Google Scholar 

  23. Cockcroft D, Gault M (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  PubMed  Google Scholar 

  24. Levey AS, Coresh J, Greene T (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    Article  CAS  PubMed  Google Scholar 

  25. Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, Van Lente F (2007) Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem 53:766–772

    Article  CAS  PubMed  Google Scholar 

  26. Levey AS, Stevens LA, Schmid CH (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed Central  PubMed  Google Scholar 

  27. Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985

    Article  PubMed  Google Scholar 

  28. Hoek FJ, Kemperman FA, Krediet RT (2003) A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 18:2024–2031

    Article  CAS  PubMed  Google Scholar 

  29. Larsson A, Malm J, Grubb A, Hansson LO (2004) Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L. Scand J Clin Lab Invest 64:25–30

    Article  CAS  PubMed  Google Scholar 

  30. Le Bricon T, Leblanc I, Benlakehal M, Gay-Bellile C, Erlich D, Boudaoud S (2005) Evaluation of renal function in intensive care: plasma cystatin C vs. creatinine and derived glomerular filtration rate estimates. Clin Chem Lab Med 43:953–957

    Article  PubMed  Google Scholar 

  31. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29

    Article  CAS  PubMed  Google Scholar 

  32. Schetz M, Gunst J, Van den Berghe G (2014) The impact of using estimated GFR versus creatinine clearance on the evaluation of recovery from acute kidney injury in the ICU. Intensive Care Med 40:1709–1717

    Article  CAS  PubMed  Google Scholar 

  33. Macedo E, Bouchard J, Soroko SH, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, Mehta RL (2010) Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care 14:R82

    Article  PubMed Central  PubMed  Google Scholar 

  34. Shannon JA (1935) The renal excretion of creatinine in man. J Clin Invest 14:403–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Molitoris BA (2013) Measuring glomerular filtration rate in the intensive care unit: no substitutes please. Crit Care 17:181

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wang E, Meier DJ, Sandoval RM, Von Hendy-Willson VE, Pressler BM, Bunch RM, Alloosh M, Sturek MS, Schwartz GJ, Molitoris BA (2012) A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals. Kidney Int 81:112–117

    Article  PubMed  Google Scholar 

  37. Carlier M, Carrette S, Roberts J, Stove V, Verstraete A, Hoste E, Decruyenaere J, Depuydt P, Lipman J, Wallis S, De Waele J (2013) Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care 17:R84

    Article  PubMed Central  PubMed  Google Scholar 

  38. Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, Lipman J, Roberts JA (2012) Subtherapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142:30–39

    Article  CAS  PubMed  Google Scholar 

  39. Panteghini M (2008) Enzymatic assays for creatinine: time for action. Clin Chem Lab Med 46:567–572

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. Carlier is funded through a pre-doctoral mandate by the Research Foundation Flanders. E. Hoste and J. De Waele are both senior clinical investigators from the Research Foundation Flanders. We would like to thank Mrs. Waterloos from the Department of Nephrology for measurement of inulin concentrations.

Conflicts of interest

EH has received speakers fees from Astute Medical and contributed to clinical studies on biomarkers from the same company. In addition, he is co-investigator for an academic sponsored study on kidney biomarkers. The other authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke Carlier.

Additional information

Take home message: Estimates of glomerular filtration rate (GFR) (including measured urinary creatinine clearance) have low accuracy and precision in critically ill patients. Equations based on creatinine performed worst and should not be used in critically ill patients. Cystatin C based formulas, especially the newest CKD-EPIcr-cys, performed reasonably. When overestimation of GFR is taken into account, urinary creatinine clearance measurement may provide a cheaper alternative with comparable accuracy and precision.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 829 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlier, M., Dumoulin, A., Janssen, A. et al. Comparison of different equations to assess glomerular filtration in critically ill patients. Intensive Care Med 41, 427–435 (2015). https://doi.org/10.1007/s00134-014-3641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-014-3641-9

Keywords

Navigation