Skip to main content
Log in

Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial

  • Pediatric Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Cardiopulmonary bypass induces an ischaemia–reperfusion injury and systemic inflammatory response, which contributes to low cardiac output syndrome following cardiac surgery. Exogenous nitric oxide during cardiopulmonary bypass has shown potential to ameliorate such injury. We undertook a large randomised controlled trial to investigate the clinical effects of administering nitric oxide to the cardiopulmonary bypass circuit in children.

Methods

After written informed consent, children were randomised to receive 20 ppm nitric oxide to the gas inflow of the cardiopulmonary bypass oxygenator, or standard conduct of bypass.

Results

101 children received nitric oxide and developed low cardiac output syndrome less frequently (15 vs. 31 %, p = 0.007) than the 97 children who did not receive nitric oxide. This effect was most marked in children aged less than 6 weeks of age (20 vs. 52 %, p = 0.012) and in those aged 6 weeks to 2 years (6 vs. 24 %, p = 0.026), who also had significantly reduced ICU length of stay (43 vs. 84 h, p = 0.031). Low cardiac output syndrome was less frequent following more complex surgeries if nitric oxide was administered (17 vs. 48 %, p = 0.018). ECMO was used less often in the nitric oxide group (1 vs. 8 %, p = 0.014).

Conclusions

Delivery of nitric oxide to the oxygenator gas flow during paediatric cardiopulmonary bypass reduced the incidence of low cardiac output syndrome by varying degrees, according to age group and surgery complexity.

Clinical Trial Registration: ACTRN12615001376538.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wernovsky G, Wypij D, Jonas RA, Mayer JE, Hanley FL, Hickey PR, Walsh AZ, Chang AC, Castaneda AR, Newburger JW, Wesser DL (1995) Postoperative course and haemodynamic profile after the arterial switch operation in neonates and infants: a comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation 92:2226–2235

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman TM, Wernovsky G, Atz AM, Kulik TJ, Nelson DP, Chang AC, Bailey JM, Akbary A, Kocsis JF, Kaczmarek R, Spray TL, Wessel DL (2003) Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 107:996–1002

    Article  CAS  PubMed  Google Scholar 

  3. Ma M, Guavreau K, Allan CK, Mayer JE, Jenkins JK (2007) Causes of death after congenital heart surgery. Ann Thorac Surg 83(4):1438–1445

    Article  PubMed  Google Scholar 

  4. Paparella D, Yau TM, Young E (2002) Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg 21:232–244

    Article  CAS  PubMed  Google Scholar 

  5. Guzik TJ, Korbut R, Adamek-Guzik T (2003) Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 54(4):469–487

    CAS  PubMed  Google Scholar 

  6. Rossaint R, Lewandowski K, Zapol WM (2014) Our paper 20 years later: inhaled nitric oxide for the acute respiratory distress syndrome—discovery, current understanding, and focussed targets of future applications. Intensive Care Med 40(11):1649–1658

    Article  CAS  PubMed  Google Scholar 

  7. Uchiyama T, Otani H, Okada T, Ninomiya H, Kido M, Imamura H (2002) Nitric oxide induces caspase-dependent apoptosis and necrosis in neonatal rat cardiomyocytes. J Mol Cell Cadiol 34:1049–1061

    Article  CAS  Google Scholar 

  8. Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW (1997) Release of gelatinase A during platelet activation mediates aggregation. Nature 386:616–619

    Article  CAS  PubMed  Google Scholar 

  9. Comini L, Bachetti T, Agnoletti L, Gaia G, Curello S, Milanesi B (1999) Induction of functional inducible nitric oxide synthetase in monocytes of patients with congestive heart failure: link with tumour necrosis factor-alpha. Eur Heart J 20:1503–1513

    Article  CAS  PubMed  Google Scholar 

  10. Van Dervort AL, Yan L, Madara PJ, Cobb JP, Wesley RA, Corriveau CC (1994) Nitric oxide regulates endotoxin-induced TNF-alpha production by human neutrophils. J Immunol 152:4102–4109

    PubMed  Google Scholar 

  11. Zakkar M, Guida G, Suleiman MS, Angelini GD (2015) Cardiopulmonary bypass and oxidative stress. Oxid Med Cell Longev 2015:189863

    Article  PubMed  PubMed Central  Google Scholar 

  12. Phillips L, Toledo AH, Lopez-Neblina F, Anaya-Prado R, Toledo-Pereyra LH (2009) Nitric oxide mechanism of protection in ischaemia and reperfusion injury. J Invest Surg 22(1):46–55

    Article  PubMed  Google Scholar 

  13. Godiez-Rubi M, Rojas-Mayorquin AE, Ortuno-Satiaguin D (2013) Nitric oxide donors as neuroprotective agents after ischaemic stroke related inflammatory reaction. Oxid Med Cell Longev 2013:297357. doi:10.1155/2013/297357

  14. Jones SP, Bolli R (2006) The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 40(1):16–23

    Article  CAS  PubMed  Google Scholar 

  15. Lin X, Huang Y, Pokreisz P, Vermeersch P, Marsboom G, Swinnen M, Verbeken E, Santos J, Pelles M, Gillijns H, Van de Wert F, Bloch K, Janssens S (2007) Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischaemia and reperfusion. J Am Coll Cardiol 50(8):808–817

    Article  Google Scholar 

  16. Nagasaka Y, Fernandez BO, Garcia-Saura MF, Petersen B, Ichinose F, Bloch KD, Feelisch M, Zapol WM (2008) Brief periods of nitric oxide inhalation protect against myocardial ischaemia-reperfusion injury. Anesthesiology 109(4):675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gianetti J, Del Sarto P, Bevilacqua S, Vassalle C, De Filippis R, Kacila M, Farreti PA, Clerico A, Glauber M, Biagini A (2004) Supplemental nitric oxide and its effect on myocardial injury and function in patients undergoing cardiac surgery with extracorporeal circulation. J Thorac Cardiovasc Surg 127(1):44–50

    Article  CAS  PubMed  Google Scholar 

  18. Checchia P, Bronicki R, Muenzer J, Dixon D, Raithel S, Gandhi S, Huddleston C (2013) Nitric oxide delivery during cardiopulmonary bypass reduces postoperative morbidity in children—a randomised controlled trial. J Thorac Cardiovasc Surg 146(3):530–536

    Article  CAS  PubMed  Google Scholar 

  19. James C, Horton S, Brizard C, Molesworth C, Millar J, Butt W (2015) Nitric oxide during cardiopulmonary bypass improves clinical outcome: a blinded, randomized controlled trial. Circulation 132:A14827

    Google Scholar 

  20. Gaies M, Gurney J, Yen A, Napoli M, Gajarski R, Ohye R, Charpie J, Hirsch J (2010) Vasoactive-inotrope score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med 11:234–238

    Article  PubMed  Google Scholar 

  21. Duke T, Stocker C, Butt W (2004) Monitoring children after cardiac surgery: a minimalist approach might be maximally effective. Crit Care Res 6:306–310

    CAS  Google Scholar 

  22. Robert S, Borasino S, Dabal R, Cleveland D, Hock K, Alten J (2015) Postoperative hydrocortisone infusion reduces the prevalence of low cardiac output syndrome after neonatal cardiopulmonary bypass. Pediatr Crit Care Med 16(7):629–636

    Article  PubMed  Google Scholar 

  23. Oualha M, Urien S, Spreux-Varoquaux O, Bordessoule A, D’Agostino I, Pouard P, Treluyer JM (2014) Pharmacokinetics, haemodynamic and metabolic effects of epinephrine to prevent post-operative low cardiac output syndrome in children. Crit Care 18(1):R23

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kleiber N, de Wildt S, Cortina G, Clifford M, van Rosmalen J, van Dijk M, Tibboel D, Millar J (2016) A comparative analysis of pre-emptive versus targeted sedation on cardiovascular stability after high-risk cardiac surgery in infants. Pediatr Crit Care Med 17(4):321–331

    Article  PubMed  Google Scholar 

  25. Kozik DJ, Tweddell JS (2006) Characterizing the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg 81(6):S2347–S2354

    Article  PubMed  Google Scholar 

  26. Bronicki RA, Chang AC (2011) Management of the postoperative pediatric cardiac surgical patient. Crit Care Med 39(8):1974–1984

    Article  PubMed  Google Scholar 

  27. Mascio CE, Austin EH, Jacobs JP, Jacobs ML, Wallace AS, He X, Pasquali SK (2014) Perioperative mechanical circulatory support in children: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. J Thorac Cardiovasc Surg 147(2):658–665

    Article  PubMed  Google Scholar 

  28. Lei C, Berra L, Rezoagali E, Yu B, Strelow S, Nordio F, Bonventre J, Xiong L, Zapol W (2015) Prevention of acute kidney injury by nitric oxide during and after prolonged cardiopulmonary bypass. A double blind randomized controlled trial. Abstract presentation, American Heart Association Scientific Sessions, Orlando, Florida, Nov 2015

  29. Rassaf T, Kleinbongard P, Kelm M (2005) Circulating NO pool in humans. Kidney Blood Press Res 28:341–348

    Article  CAS  PubMed  Google Scholar 

  30. Bhatraju P, Crawford J, Hall M, Lang JD (2015) Inhaled nitric oxide: current clinical concepts. Nitric Oxide 31(50):114–128

    Article  Google Scholar 

  31. Liu C, Liu X, Janes J, Stapley R, Patel RP, Gladwin MT, Kim-Shapiro DB (2014) Mechanism of faster NO scavenging by older stored red blood cells. Redox Biol 10(2):211–219

    Article  Google Scholar 

  32. Zimring JC (2015) Established and theoretical factors to consider in assessing the red cell storage lesion. Blood 125(14):2185–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fischer UM, Schindler R, Brixius K, Mehlhorn U, Bloch W (2007) Extracorporeal circulation activates endothelial nitric oxide synthase in erythrocytes. Ann Thorac Surg 84(6):2000–2003

    Article  PubMed  Google Scholar 

  34. Bolli R (2001) Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischaemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 33(11):1897–1918

    Article  CAS  PubMed  Google Scholar 

  35. Lang JD, Smith AB, Brandon A, Bradley KM, Liu Y, Li W, Crowe DR, Jhala NC, Cross RC, Frennette L, Martay K, Vater YL, Vitin AA, Dembo GA, DuBay DA, Bynon JS, Szychowski JM, Reyes JD, Halldorson JB, Rayhill SC, Dick AA, Bakthavatsalam R, Brandenberger J, Broeckel-Elrod JA, Sissons-Ross L, Jordan T, Chen LY, Siriussawakul A, Eckhoff DE, Patel RP (2014) A randomized clinical trial testing the anti-inflammatory effects of preemptive inhaled nitric oxide in human liver transplantation. PLoS One 9(2):e86053

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mathru M, Huda R, Solanki DR, Hays S, Lang JD (2007) Inhaled nitric oxide attenuates reperfusion inflammatory responses in humans. Anesthesiology 106(2):275–282

    Article  CAS  PubMed  Google Scholar 

  37. Keh D, Gerlach M, Kurer KJ, Gerlach H (1996) Reduction of platelet trapping in membrane oxygenators by transmembraneous application of gaseous nitric oxide. Int J Artif Organs 19(5):291–293

    CAS  PubMed  Google Scholar 

  38. Mellgren K, Friberg LG, Mellgren G, Hedner T, Wennmalm A, Wadenvik H (1996) Nitric oxide in the oxygenator sweep gas reduces platelet activation during experimental perfusion. Ann Thorac Surg 61(4):1194–1198

    Article  CAS  PubMed  Google Scholar 

  39. Chello M, Mastroroberto P, Marchese AR, Maltese G, Santangelo E, Amantea B (1998) Nitric oxide inhibits neutrophil adhesion during experimental extracorporeal circulation. Anesthesiology 89(2):443–448

    Article  CAS  PubMed  Google Scholar 

  40. Harvey MJ, Gaies MG, Prosser LA (2015) US and international in-hospital costs of extracorporeal membrane oxygenation: a systematic review. Appl Health Econ Health Policy 13(4):341–357

    Article  PubMed  Google Scholar 

  41. Maitre B, Djibre M, Katsahian S, Habibi A, Stankovic Stojanovic K, Khellaf M, Bourgeon I, Lionnet F, Charles-Nelson A, Brochard L, Lemaire F, Galacteros F, Brun-Buisson C, Fartoukh M, Mekontso Dessap A (2015) Inhaled nitric oxide for acute chest syndrome in adult sickle cell patients: a randomized controlled study. Intensive Care Med 41(12):2121–2129

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher James.

Ethics declarations

Funding sources

None.

Conflicts of interest

WB has received payment for educational activities by Ikaria Australia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary Figure 1. Time of diagnosis of LCOS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, C., Millar, J., Horton, S. et al. Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial. Intensive Care Med 42, 1744–1752 (2016). https://doi.org/10.1007/s00134-016-4420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-016-4420-6

Keywords

Navigation