Skip to main content

Advertisement

Log in

Venous thromboembolic events in critically ill traumatic brain injury patients

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

To estimate the prevalence, risk factors, prophylactic treatment and impact on mortality for venous thromboembolism (VTE) in patients with moderate to severe traumatic brain injury (TBI) treated in the intensive care unit.

Methods

A post hoc analysis of the erythropoietin in traumatic brain injury (EPO-TBI) trial that included twice-weekly lower limb ultrasound screening. Venous thrombotic events were defined as ultrasound-proven proximal deep venous thrombosis (DVT) or clinically detected pulmonary embolism (PE). Results are reported as events, percentages or medians and interquartile range (IQR). Cox regression analysis was used to calculate adjusted hazard ratios (HR) with 95% confidence intervals (CI) for time to VTE and death.

Results

Of 603 patients, 119 (19.7%) developed VTE, mostly comprising DVT (102 patients, 16.9%) with a smaller number of PE events (24 patients, 4.0%). Median time to DVT diagnosis was 6 days (IQR 2–11) and to PE diagnosis 6.5 days (IQR 2–16.5). Mechanical prophylaxis (MP) was used in 91% of patients on day 1, 97% of patients on day 3 and 98% of patients on day 7. Pharmacological prophylaxis was given in 5% of patients on day 1, 30% of patients on day 3 and 57% of patients on day 7. Factors associated with time to VTE were age (HR per year 1.02, 95% CI 1.01–1.03), patient weight (HR per kg 1.01, 95% CI 1–1.02) and TBI severity according to the International Mission for Prognosis and Analysis of Clinical Trials risk of poor outcome (HR per 10% increase 1.12, 95% CI 1.01–1.25). The development of VTE was not associated with mortality (HR 0.92, 95% CI 0.51–1.65).

Conclusions

Despite mechanical and pharmacological prophylaxis, VTE occurs in one out of every five patients with TBI treated in the ICU. Higher age, greater weight and greater severity of TBI increase the risk. The development of VTE was not associated with excess mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Phelan HA (2013) Venous thromboembolism after traumatic brain injury. Semin Thromb Hemost 39:541–548

    Article  PubMed  Google Scholar 

  2. Abdel-Aziz H, Dunham CM, Malik RJ, Hileman BM (2015) Timing for deep vein thrombosis chemoprophylaxis in traumatic brain injury: an evidence-based review. Crit Care 19:96

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lier H, Bottiger BW, Hinkelbein J, Krep H, Bernhard M (2011) Coagulation management in multiple trauma: a systematic review. Intensive Care Med 37:572–582

    Article  PubMed  Google Scholar 

  4. Ho KM, Burrell M, Rao S, Baker R (2010) Incidence and risk factors for fatal pulmonary embolism after major trauma: a nested cohort study. Br J Anaesth 105:596–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allen CJ, Murray CR, Meizoso JP, Ginzburg E, Schulman CI, Lineen EB, Namias N, Proctor KG (2016) Surveillance and early management of deep vein thrombosis decreases rate of pulmonary embolism in high-risk trauma patients. J Am Coll Surg 222:65–72

    Article  PubMed  Google Scholar 

  6. Geerts WH, Code KI, Jay RM, Chen E, Szalai JP (1994) A prospective study of venous thromboembolism after major trauma. N Engl J Med 331:1601–1606

    Article  CAS  PubMed  Google Scholar 

  7. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW (2007) Guidelines for the management of severe traumatic brain injury. V. Deep vein thrombosis prophylaxis. J Neurotrauma 24(Suppl 1):S32–S36

    Google Scholar 

  8. Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y, Bailey M, Cooper DJ, Duranteau J, Huet O, Mak A, McArthur C, Pettila V, Skrifvars M, Vallance S, Varma D, Wills J, Bellomo R, EPO-TBI Investigators, ANZICS Clinical Trials Group (2015) Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 386:2499–2506

    Article  CAS  PubMed  Google Scholar 

  9. Nichol A, French C, Little L, Presneill J, Cooper DJ, Haddad S, Duranteau J, Huet O, Skrifvars M, Arabi Y, Bellomo R, EPO-TBI Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group (2015) Erythropoietin in traumatic brain injury: study protocol for a randomised controlled trial. Trials 16:39

    Article  PubMed  PubMed Central  Google Scholar 

  10. Corwin HL, Gettinger A, Fabian TC, May A, Pearl RG, Heard S, An R, Bowers PJ, Burton P, Klausner MA, Corwin MJ, EPO Critical Care Trials Group (2007) Efficacy and safety of epoetin alfa in critically ill patients. N Engl J Med 357:965–976

    Article  CAS  PubMed  Google Scholar 

  11. Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC, Tilley BC, Epo Severe TBITI, Baldwin A, Rivera Lara L, Saucedo-Crespo H, Ahmed O, Sadasivan S, Ponce L, Cruz-Navarro J, Shahin H, Aisiku IP, Doshi P, Valadka A, Neipert L, Waguspack JM, Rubin ML, Benoit JS, Swank P (2014) Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA 312:36–47

    Article  PubMed  PubMed Central  Google Scholar 

  12. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, Reddan D, Investigators C (2006) Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 355:2085–2098

    Article  CAS  PubMed  Google Scholar 

  13. Ekeh AP, Dominguez KM, Markert RJ, McCarthy MC (2010) Incidence and risk factors for deep venous thrombosis after moderate and severe brain injury. J Trauma 68:912–915

    PubMed  Google Scholar 

  14. Ortel TL (2010) Acquired thrombotic risk factors in the critical care setting. Crit Care Med 38:S43–S50

    Article  PubMed  Google Scholar 

  15. Reiff DA, Haricharan RN, Bullington NM, Griffin RL, McGwin G Jr, Rue LW 3rd (2009) Traumatic brain injury is associated with the development of deep vein thrombosis independent of pharmacological prophylaxis. J Trauma 66:1436–1440

    Article  CAS  PubMed  Google Scholar 

  16. Knudson MM, Ikossi DG, Khaw L, Morabito D, Speetzen LS (2004) Thromboembolism after trauma: an analysis of 1602 episodes from the American College of Surgeons National Trauma Data Bank. Ann Surg 240:490–496 (discussion 496-498)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Presneill J, Little L, Nichol A, French C, Cooper DJ, Haddad S, Duranteau J, Huet O, Skrifvars M, Arabi Y, Bellomo R, EPO-TBI Investigators, ANZICS Clinical Trials Group (2014) Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury. Trials 15:501

    Article  PubMed  PubMed Central  Google Scholar 

  18. PROTECT Investigators for the Canadian Critical Care Trials Group and the Australian and New Zealand Intensive Care Society Clinical Trials Group, Cook D, Meade M et al (2011) Dalteparin versus unfractionated heparin in critically ill patients. N Engl J Med 364:1305–1314

    Article  Google Scholar 

  19. Garcia-Olivares P, Guerrero JE, Galdos P, Carriedo D, Murillo F, Rivera A (2014) PROF-ETEV study: prophylaxis of venous thromboembolic disease in critical care units in Spain. Intensive Care Med 40:1698–1708

    Article  PubMed  Google Scholar 

  20. Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW (2008) Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation 117:93–102

    Article  PubMed  Google Scholar 

  21. Tracy RP (2002) Hemostatic and inflammatory markers as risk factors for coronary disease in the elderly. Am J Geriatr Cardiol 11(93–100):107

    Google Scholar 

  22. Kasjanovova D, Adameckova D, Gratzlova J, Hegyi L (1993) Sex-related and age-related differences in platelet function in vitro: influence of hematocrit. Mech Ageing Dev 71:103–109

    Article  CAS  PubMed  Google Scholar 

  23. Gleerup G, Winther K (1995) The effect of ageing on platelet function and fibrinolytic activity. Angiology 46:715–718

    Article  CAS  PubMed  Google Scholar 

  24. Taddei S, Virdis A, Ghiadoni L, Salvetti G, Bernini G, Magagna A, Salvetti A (2001) Age-related reduction of NO availability and oxidative stress in humans. Hypertension 38:274–279 (Dallas, Tex: 1979)

    Article  CAS  PubMed  Google Scholar 

  25. Martinelli I, Bucciarelli P, Mannucci PM (2010) Thrombotic risk factors: basic pathophysiology. Crit Care Med 38:S3–S9

    Article  PubMed  Google Scholar 

  26. Franchini M, Targher G, Montagnana M, Lippi G (2008) The metabolic syndrome and the risk of arterial and venous thrombosis. Thromb Res 122:727–735

    Article  CAS  PubMed  Google Scholar 

  27. Nunez JM, Becher RD, Rebo GJ, Farrah JP, Borgerding EM, Stirparo JJ, Lauer C, Kilgo P, Miller PR (2015) Prospective evaluation of weight-based prophylactic enoxaparin dosing in critically Ill trauma patients: adequacy of antixa levels is improved. Am Surg 81:605–609

    PubMed  Google Scholar 

  28. Ko A, Harada MY, Barmparas G, Chung K, Mason R, Yim DA, Dhillon N, Margulies DR, Gewertz BL, Ley EJ (2016) Association between enoxaparin dosage adjusted by anti-factor Xa trough level and clinically evident venous thromboembolism after trauma. JAMA Surg 151:1006–1013

    Article  PubMed  Google Scholar 

  29. Aryafar H, Kinney TB (2010) Optional inferior vena cava filters in the trauma patient. Semin Intervent Radiol 27:68–80

    Article  PubMed  PubMed Central  Google Scholar 

  30. Beitland S, Sandven I, Kjærvik LK, Sandset PM, Sunde K, Eken T (2015) Thromboprophylaxis with low molecular weight heparin versus unfractionated heparin in intensive care patients: a systematic review with meta-anlaysis and trial sequential analysis. Intensive Care Med 41:1209–1219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Markus Skrifvars has received unrestricted grant support from Finska Läkaresällskapet, Medicinska Understödsföreningen Liv och Hälsa and Svenska Kulturfonden.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Markus B. Skrifvars.

Ethics declarations

Conflicts of interest

Markus Skrifvars reports having received a research grant from GE Healthcare and travel reimbursements and lecture fees from Orion Pharma, COVIDIEN, Astellas Pharma and Axis-Shield. All other authors report that they have no conflicts of interest.

Additional information

Take-home message: Despite mechanical and pharmacological prophylaxis, venous thromboembolism occurs in one of five patients with traumatic brain injury treated in the intensive care unit. Older age, greater weight and traumatic brain injury severity increase this risk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skrifvars, M.B., Bailey, M., Presneill, J. et al. Venous thromboembolic events in critically ill traumatic brain injury patients. Intensive Care Med 43, 419–428 (2017). https://doi.org/10.1007/s00134-016-4655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-016-4655-2

Keywords

Navigation