Skip to main content

Advertisement

Log in

An optimality criteria-based algorithm for efficient design optimization of laminated composites using concurrent resizing and scaling

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Numerical optimization is an indispensable part of the design process of laminated composite structures. Several optimality criteria-based algorithms exist which rely on a sequential resizing and scaling approach. This paper presents a novel design algorithm applicable for stiffness and eigenfrequency optimization of composite structures with concurrent consideration of resizing and scaling operations. A method is introduced that allows for an efficient consideration of nonlinear constraints. This is done by determining stable concurrent scaling parameters from first-order constraint change ratio estimations. Optimization is carried out using optimality criteria in three independent steps, namely with respect to fiber angles, ply thickness ratios, and total laminate thickness. Sensitivity analyses are performed analytically at low computational costs. Numerical examples demonstrate the efficiency and fast convergence of the method. Compared to established algorithms, the number of required function evaluations is reduced significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdalla MM, Setoodeh S, Gürdal Z (2007) Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Compos Struct 81(2):283–291

    Article  Google Scholar 

  • Duvaut G, Terrel G, Léné F, Verijenko V (2000) Optimization of fiber reinforced composites. Compos Struct 48(1):83–89

    Article  Google Scholar 

  • Fischer B, Horn B, Bartelt C, Blößl Y (2015) Method for an automated optimization of fiber patch placement layup designs. Int J Compos Math 5(2):37–46

    Google Scholar 

  • Fukunaga H, Sekine H (1993) Optimum design of composite structures for shape, layer angle and layer thickness distributions. J Compos Mater 27(15):1479–1492

    Article  Google Scholar 

  • Fukunaga H, Vanderplaats G (1991) Strength optimization of laminated composites with respect to layer thickness and/or layer orientation angle. Comput Struct 40(6):1429–1439

    Article  Google Scholar 

  • Gallier J (2010) The schur complement and symmetric positive semidefinite (and definite) matrices. December 44:1–12

    Google Scholar 

  • Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials part ii: Variable stiffness design. Compos Struct 93(1):1–13

    Article  Google Scholar 

  • Grandhi R, Bharatram G, Venkayya V (1992) Optimum design of plate structures with multiple frequency constraints. Structural optimization 5(1-2):100–107

    Article  Google Scholar 

  • Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47(2):329–334

    Article  Google Scholar 

  • Henrichsen SR, Lindgaard E, Lund E (2015) Free material stiffness design of laminated composite structures using commercial finite element analysis codes. Struct Multidiscip Optim 51(5):1097–1111

    Article  MathSciNet  Google Scholar 

  • Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. In: Proceedings of the royal society of london a: mathematical, Physical and Engineering Sciences, The Royal Society, vol 193, pp 281-297

  • Hoffman O (1967) The brittle strength of orthotropic materials. J Compos Mater 1(2):200–206

    Article  Google Scholar 

  • Hyer M, Charette R (1991) Use of curvilinear fiber format in composite structure design. AIAA J 29 (6):1011–1015

    Article  Google Scholar 

  • Khan M, Willmert K (1981) An efficient optimality criterion method for natural frequency constrained structures. Comput Struct 14(5):501–507

    Article  MATH  Google Scholar 

  • Khosravi P, Sedaghati R (2008) Design of laminated composite structures for optimum fiber direction and layer thickness, using optimality criteria. Struct Multidiscip Optim 36(2):159–167

    Article  Google Scholar 

  • Khot N (1981) Algorithms based on optimality criteria to design minimum weight structures. Eng Optim 5 (2):73–90

    Article  Google Scholar 

  • Khot N, Venkayya V, Johnson C, Tischler V (1973) Optimization of fiber reinforced composite structures. Int J Solids Struct 9(10):1225–1236

    Article  Google Scholar 

  • Kiusalaas J, Shaw RC (1978) An algorithm for optimal structural design with frequency constraints. Int J Numer Methods Eng 13(2):283–295

    Article  MATH  Google Scholar 

  • Kriechbaum R, Schäfer J, Mattheck C (1992) CAIO (Computer Aided Internal Optimization) - A powerful method to optimize fiber arrangement in composite materials. In: European conference on smart structures and materials, 1 st, Glasgow, pp 281– 284

  • Lipton R, Stuebner M (2007) Optimal design of composite structures for strength and stiffness: an inverse homogenization approach. Struct Multidiscip Optim 33(4-5):351–362

    Article  MathSciNet  MATH  Google Scholar 

  • Masur EF (1970) Optimum stiffness and strength of elastic structures. J Eng Mech Div 96(5):621–640

    Google Scholar 

  • Parnas L, Oral S, Ceyhan Ü (2003) Optimum design of composite structures with curved fiber courses. Compos Sci Technol 63(7):1071–1082

    Article  Google Scholar 

  • Pedersen NL (2006) On design of fiber-nets and orientation for eigenfrequency optimization of plates. Comput Mech 39(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen P (1989) On optimal orientation of orthotropic materials. Structural Optimization 1(2):101–106

    Article  Google Scholar 

  • Pedersen P (1990) Bounds on elastic energy in solids of orthotropic materials. Structural Optimization 2 (1):55–63

    Article  Google Scholar 

  • Pedersen P (1991) On thickness and orientational design with orthotropic materials. Structural Optimization 3(2):69–78

    Article  Google Scholar 

  • Peeters D, van Baalen D, Abdallah M (2015) Combining topology and lamination parameter optimisation. Struct Multidiscip Optim 52(1):105–120

    Article  MathSciNet  Google Scholar 

  • Puck A, Schürmann H (1998) Failure analysis of frp laminates by means of physically based phenomenological models. Compos Sci Technol 58(7):1045–1067

    Article  Google Scholar 

  • Rettenwander T, Fischlschweiger M, Steinbichler G (2014) Computational structural tailoring of continuous fibre reinforced polymer matrix composites by hybridisation of principal stress and thickness optimisation. Compos Struct 108:711–719

    Article  Google Scholar 

  • Schläpfer B, Kress G (2012) A sensitivity-based parameterization concept for the automated design and placement of reinforcement doublers. Compos Struct 94(3):896–903

    Article  Google Scholar 

  • Schläpfer B, Kress G (2014) Optimal design and testing of laminated light-weight composite structures with local reinforcements considering strength constraints part i: Design. Compos A: Appl Sci Manuf 61:268–278

    Article  Google Scholar 

  • Setoodeh S, Abdalla M, Gürdal Z (2005) Combined topology and fiber path design of composite layers using cellular automata. Struct Multidiscip Optim 30(6):413–421

    Article  Google Scholar 

  • Stanković T, Mueller J, Egan P, Shea K (2015) A generalized optimality criteria method for optimization of additively manufactured multimaterial lattice structures. J Mech Des 137(11):111, 405

    Article  Google Scholar 

  • Szyszkowski W (1991) Multimodal optimality criterion for maximum fundamental frequency of free vibrations. Comput Struct 41(5):909–916

    Article  MATH  Google Scholar 

  • Thomsen J (1991) Optimization of composite discs. Structural optimization 3(2):89–98

    Article  Google Scholar 

  • Tsai S (1968) Fundamental aspects of fiber reinforced plastic composites. University Michigen Press, Ann Arbor

    Google Scholar 

  • Venkayya V (1993) Generalized optimality criteria method. Prog Astronaut Aeronaut 150:151–151

    Google Scholar 

  • Zacharopoulos A, Willmert K, Khan M (1984) An optimality criterion method for structures with stress, displacement and frequency constraints. Comput Struct 19(4):621–629

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Swiss Commission for Technology and Innovation (CTI project 15096.1 PFIW-IW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Kussmaul.

Appendices

Appendix A: Transformation

$$ \boldsymbol{T} = \left[\begin{array}{lll} \cos(\theta)^{2} & \sin(\theta)^{2} & 2 \sin(\theta) \cos(\theta) \\ \sin(\theta)^{2} & \cos(\theta)^{2} & -2 \sin(\theta) \cos(\theta) \\ -\sin(\theta) \cos(\theta) & \sin(\theta) \cos(\theta) & \cos(\theta)^{2}-\sin(\theta)^{2} \\ \end{array}\right] $$
(69)

Appendix B: Material properties

Table 2 Material properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kussmaul, R., Zogg, M. & Ermanni, P. An optimality criteria-based algorithm for efficient design optimization of laminated composites using concurrent resizing and scaling. Struct Multidisc Optim 58, 735–750 (2018). https://doi.org/10.1007/s00158-018-1927-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1927-1

Keywords

Navigation