Skip to main content

Advertisement

Log in

High-mass X-ray binaries in the Milky Way

A closer look with INTEGRAL

  • REVIEW ARTICLE
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

High-mass X-ray binaries are fundamental in the study of stellar evolution, nucleosynthesis, structure and evolution of galaxies and accretion processes. Hard X-rays observations by INTEGRAL and Swift have broadened significantly our understanding in particular for the super-giant systems in the Milky Way, whose number has increased by almost a factor of three. INTEGRAL played a crucial role in the discovery, study and understanding of heavily obscured systems and of fast X-ray transients. Most super-giant systems can now be classified into three categories: classical/obscured, eccentric and fast transient. The classical systems feature low eccentricity and variability factor of \({\sim }10^3\), mostly driven by hydrodynamic phenomena occurring on scales larger than the accretion radius. Among them, systems with short orbital periods and close to Roche-Lobe overflow or with slow winds appear highly obscured. In eccentric systems, the variability amplitude can reach even higher factors because of the contrast of the wind density along the orbit. Four super-giant systems, featuring fast outbursts, very short orbital periods and anomalously low accretion rates, are not yet understood. Simulations of the accretion processes on relatively large scales have progressed and reproduce parts of the observations. The combined effects of wind clumps, magnetic fields, neutron star rotation and eccentricity ought to be included in future modelling work. Observations with INTEGRAL in combination with other observatories were also important for detecting cyclotron resonant scattering features in spectra of X-ray pulsars, probing their variations and the geometry of the accretion column and emission regions. Finally, the unique characteristics of INTEGRAL and its long life time played a fundamental role for building a complete catalogue of HXMBs, to study the different populations of these systems in our Galaxy and to constrain some of the time scales and processes driving their birth and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ankay A, Kaper L, de Bruijne JHJ, Dewi J, Hoogerwerf R, Savonije GJ (2001) The origin of the runaway high-mass X-ray binary HD 153919/4U1700-37. A&A 370:170–175. doi:10.1051/0004-6361:20010192. arXiv:astro-ph/0102118

  • Apparao KMV, Naranan S, Kelley RL, Bradt HV (1980) 2S1417-624—a variable galactic X-ray source near CG312-1. A&A 89:249

    ADS  Google Scholar 

  • Araya RA, Harding AK (1999) Cyclotron line features from near-critical magnetic fields: the effect of optical depth and plasma geometry. Astrophys J 517:334–354. doi:10.1086/307157

    Article  ADS  Google Scholar 

  • Araya-Góchez RA, Harding AK (2000) Cyclotron-line features from near-critical fields. II. On the effect of anisotropic radiation fields. Astrophys J 544:1067–1080. doi:10.1086/317224. arXiv:astro-ph/0007191

  • Augello G, Iaria R, Robba NR, Di Salvo T, Burderi L, Lavagetto G, Stella L (2003) BeppoSAX serendipitous discovery of the X-ray pulsar SAX J1802.7-2017. Astrophys J Lett 596:L63–L66. doi:10.1086/379092. arXiv:astro-ph/0308157

  • Bachetti M, Harrison FA, Walton DJ, Grefenstette BW, Chakrabarty D, Fürst F, Barret D, Beloborodov A, Boggs SE, Christensen FE, Craig WW, Fabian AC, Hailey CJ, Hornschemeier A, Kaspi V, Kulkarni SR, Maccarone T, Miller JM, Rana V, Stern D, Tendulkar SP, Tomsick J, Webb NA, Zhang WW (2014) An ultraluminous X-ray source powered by an accreting neutron star. Nature 514:202–204. doi:10.1038/nature13791. arXiv:1410.3590

  • Balbo M, Saouter P, Walter R, Pavan L, Tramacere A, Pohl M, Zurita-Heras JA (2010) HESS J1632-478: an energetic relic. Astrophys J Suppl 520:A111. doi:10.1051/0004-6361/201014764. arXiv:1007.1970

  • Bamba A, Yokogawa J, Ueno M, Koyama K, Yamauchi S (2001) Discovery of a transient X-ray pulsar, AX J1841.0-0536, in the scutum arm region with ASCA. Publ ASJ 53:1179–1183. arXiv:astro-ph/0110423

  • Barba R, Gamen R, Morrell N (2006) HD 74194, a new binary supergiant fast X-ray transient?, possible optical counterpart of INTEGRAL hard X-ray source IGR J08408-4503. Astron Telegr 819:1

    ADS  Google Scholar 

  • Barragán L, Wilms J, Pottschmidt K, Nowak MA, Kreykenbohm I, Walter R, Tomsick JA (2009) Suzaku observation of IGR J16318-4848. A&A 508:1275–1278. doi:10.1051/0004-6361/200810811. arXiv:0912.0254

  • Barthelmy SD, Romano P, Burrows DN, Esposito P, Evans PA, Gehrels N, Kennea JA, Krimm HA, La Parola V, Markwardt CB, Pagani C, Palmer DM, Sidoli L, Vercellone S (2009) Swift observations of a new outburst of the SFXT IGR J08408-4503. Astron Telegr 2178:1

    ADS  Google Scholar 

  • Basko MM, Sunyaev RA (1976) The limiting luminosity of accreting neutron stars with magnetic fields. Mon Not RAS 175:395–417

    Article  ADS  Google Scholar 

  • Baykal A, Stark MJ, Swank J (2000) Discovery of the orbit of the transient X-ray pulsar SAX J2103.5+4545. Astrophys J Lett 544:L129–L132. doi:10.1086/317320. arXiv:astro-ph/0009481

  • Baykal A, Stark MJ, Swank JH (2002) X-ray spectra and pulse frequency changes in SAX J2103.5+4545. Astrophys J 569:903–910. doi:10.1086/339429. arXiv:astro-ph/0201080

  • Baykal A, Inam SÇ, Stark MJ, Heffner CM, Erkoca AE, Swank JH (2007) Timing studies on RXTE observations of SAX J2103.5+4545. Mon Not RAS 374:1108–1114. doi:10.1111/j.1365-2966.2006.11231.x. arXiv:astro-ph/0608653

  • Becker PA, Wolff MT (2005) Spectral formation in X-ray pulsars: bulk comptonization in the accretion shock. Astrophys J 630:465–488. doi:10.1086/431720. arXiv:astro-ph/0505129

  • Becker PA, Wolff MT (2007) Thermal and bulk comptonization in accretion-powered X-ray pulsars. Astrophys J 654:435–457. doi:10.1086/509108. arXiv:astro-ph/0609035

  • Becker RH, Swank JH, Boldt EA, Holt SS, Serlemitsos PJ, Pravdo SH, Saba JR (1977) A1540-53, an eclipsing X-ray binary pulsator. Astrophys J Lett 216:L11–L14. doi:10.1086/182498

    Article  ADS  Google Scholar 

  • Belczynski K, Wiktorowicz G, Fryer CL, Holz DE, Kalogera V (2012) Missing black holes unveil the supernova explosion mechanism. Astrophys J 757:91. doi:10.1088/0004-637X/757/1/91. arXiv:1110.1635

  • Bhadkamkar H, Ghosh P (2012) Collective properties of X-ray binary populations of galaxies. I. Luminosity and orbital period distributions of high-mass X-ray binaries. Astrophys J 746:22. doi:10.1088/0004-637X/746/1/22. arXiv:1111.3817

  • Bhalerao V, Romano P, Tomsick J, Natalucci L, Smith DM, Bellm E, Boggs SE, Chakrabarty D, Christensen FE, Craig WW, Fuerst F, Hailey CJ, Harrison FA, Krivonos RA, Lu TN, Madsen K, Stern D, Younes G, Zhang W (2015) NuSTAR detection of a cyclotron line in the supergiant fast X-ray transient IGR J17544-2619. Mon Not RAS 447:2274–2281. doi:10.1093/mnras/stu2495. arXiv:1407.0112

  • Bikmaev IF, Sunyaev RA, Revnivtsev MG, Burenin RA (2006) New nearby active galactic nuclei among INTEGRAL and RXTE X-ray sources. Astron Lett 32:221–227. doi:10.1134/S1063773706040013

    Article  ADS  Google Scholar 

  • Bikmaev IF, Burenin RA, Revnivtsev MG, Sazonov SY, Sunyaev RA, Pavlinsky MN, Sakhibullin NA (2008) Optical identifications of five INTEGRAL hard X-ray sources in the Galactic plane. Astron Lett 34:653–663. doi:10.1134/S1063773708100010 arXiv:0810.2018

    Article  ADS  Google Scholar 

  • Bildsten L, Chakrabarty D, Chiu J, Finger MH, Koh DT, Nelson RW, Prince TA, Rubin BC, Scott DM, Stollberg M, Vaughan BA, Wilson CA, Wilson RB (1997) Observations of accreting pulsars. Astrophys J Suppl 113:367. doi:10.1086/313060 arXiv:astro-ph/9707125

    Article  ADS  Google Scholar 

  • Bird AJ, Malizia A, Bazzano A, Barlow EJ, Bassani L, Hill AB, Bélanger G, Capitanio F, Clark DJ, Dean AJ, Fiocchi M, Götz D, Lebrun F, Molina M, Produit N, Renaud M, Sguera V, Stephen JB, Terrier R, Ubertini P, Walter R, Winkler C, Zurita J (2007) The third IBIS/ISGRI soft gamma-ray survey catalog. Astrophys J Suppl 170:175–186. doi:10.1086/513148 arXiv:astro-ph/0611493

  • Bird AJ, Bazzano A, Hill AB, McBride VA, Sguera V, Shaw SE, Watkins HJ (2009) Discovery of a 30-d period in the supergiant fast X-ray transient SAX J1818.6-1703. Mon Not RAS 393:L11–L15. doi:10.1111/j.1745-3933.2008.00583.x arXiv:0810.5696

    Article  ADS  Google Scholar 

  • Bird AJ, Bazzano A, Bassani L, Capitanio F, Fiocchi M, Hill AB, Malizia A, McBride VA, Scaringi S, Sguera V, Stephen JB, Ubertini P, Dean AJ, Lebrun F, Terrier R, Renaud M, Mattana F, Götz D, Rodriguez J, Belanger G, Walter R, Winkler C (2010) The fourth IBIS/ISGRI soft gamma-ray survey catalog. Astrophys J Suppl 186:1–9. doi:10.1088/0067-0049/186/1/1 arXiv:0910.1704

  • Bissantz N, Englmaier P, Gerhard O (2003) Gas dynamics in the Milky Way: second pattern speed and large-scale morphology. Mon Not RAS 340:949–968. doi:10.1046/j.1365-8711.2003.06358.x arXiv:astro-ph/0212516

    Article  ADS  Google Scholar 

  • Blay P, Ribó M, Negueruela I, Torrejón JM, Reig P, Camero A, Mirabel IF, Reglero V (2005) Further evidence for the presence of a neutron star in 4U 2206+54. INTEGRAL and VLA observations. A&A 438:963–972. doi:10.1051/0004-6361:20042207 arXiv:astro-ph/0502524

    Article  ADS  Google Scholar 

  • Blay P, Negueruela I, Reig P, Coe MJ, Corbet RHD, Fabregat J, Tarasov AE (2006) Multiwavelength monitoring of BD +53 2790, the optical counterpart to 4U 2206+54. A&A 446:1095–1105. doi:10.1051/0004-6361:20053951 arXiv:astro-ph/0510400

    Article  ADS  Google Scholar 

  • Blay P, Martínez-Núñez S, Negueruela I, Pottschmidt K, Smith DM, Torrejón JM, Reig P, Kretschmar P, Kreykenbohm I (2008) INTEGRAL long-term monitoring of the supergiant fast X-ray transient XTE J1739-302. A&A 489:669–676. doi:10.1051/0004-6361:200809385 arXiv:0806.4097

    Article  ADS  Google Scholar 

  • Blondin JM (1994) The shadow wind in high-mass X-ray binaries. Astrophys J 435:756–766. doi:10.1086/174853

    Article  ADS  Google Scholar 

  • Blondin JM, Kallman TR, Fryxell BA, Taam RE (1990) Hydrodynamic simulations of stellar wind disruption by a compact X-ray source. Astrophys J 356:591–608. doi:10.1086/168865

    Article  ADS  Google Scholar 

  • Blondin JM, Stevens IR, Kallman TR (1991) Enhanced winds and tidal streams in massive X-ray binaries. Astrophys J 371:684–695. doi:10.1086/169934

    Article  ADS  Google Scholar 

  • Bodaghee A, Walter R, Zurita Heras JA, Bird AJ, Courvoisier TJL, Malizia A, Terrier R, Ubertini P (2006) IGR J16393-4643: a new heavily-obscured X-ray pulsar. A&A 447:1027–1034. doi:10.1051/0004-6361:20053809 arXiv:astro-ph/0510112

    Article  ADS  Google Scholar 

  • Bodaghee A, Courvoisier TJL, Rodriguez J, Beckmann V, Produit N, Hannikainen D, Kuulkers E, Willis DR, Wendt G (2007) A description of sources detected by INTEGRAL during the first 4 years of observations. A&A 467:585–596. doi:10.1051/0004-6361:20077091 arXiv:astro-ph/0703043

    Article  ADS  Google Scholar 

  • Bodaghee A, Tomsick JA, Rodriguez J, Chaty S, Pottschmidt K, Walter R (2010) Broadband Suzaku observations of IGR J16207-5129. Astrophys J 719:451–458. doi:10.1088/0004-637X/719/1/451 arXiv:1006.1911

    Article  ADS  Google Scholar 

  • Bodaghee A, Tomsick JA, Rodriguez J, Chaty S, Pottschmidt K, Walter R, Romano P (2011) Suzaku observes weak flares from IGR J17391-3021 representing a common low-activity state in this supergiant fast X-ray transient. Astrophys J 727:59. doi:10.1088/0004-637X/727/1/59 arXiv:1012.0855

    Article  ADS  Google Scholar 

  • Bodaghee A, Rahoui F, Tomsick JA, Rodriguez J (2012a) Chandra observations of five INTEGRAL sources: new X-ray positions for IGR J16393-4643 and IGR J17091-3624. Astrophys J 751:113. doi:10.1088/0004-637X/751/2/113 arXiv:1203.0557

    Article  ADS  Google Scholar 

  • Bodaghee A, Tomsick JA, Rodriguez J (2012b) XMM-Newton observations of five INTEGRAL sources located towards the scutum arm. Astrophys J 753:3. doi:10.1088/0004-637X/753/1/3 arXiv:1204.3645

    Article  ADS  Google Scholar 

  • Bodaghee A, Tomsick JA, Rodriguez J, James JB (2012c) Clustering between high-mass X-ray binaries and OB associations in the Milky Way. Astrophys J 744:108. doi:10.1088/0004-637X/744/2/108 arXiv:1109.3466

    Article  ADS  Google Scholar 

  • Boldin PA, Tsygankov SS, Lutovinov AA (2013) On timing and spectral characteristics of the X-ray pulsar 4U 0115+63: evolution of the pulsation period and the cyclotron line energy. Astron Lett 39:375–388. doi:10.1134/S1063773713060029 arXiv:1305.6785

    Article  ADS  Google Scholar 

  • Bondi H, Hoyle F (1944) On the mechanism of accretion by stars. Mon Not RAS 104:273

    Article  ADS  Google Scholar 

  • Boroson B, Vrtilek SD, Kallman T, Corcoran M (2003) Chandra grating spectroscopy of the X-ray binary 4U 1700-37 in a flaring state. Astrophys J 592:516–531. doi:10.1086/375636 arXiv:astro-ph/0303277

    Article  ADS  Google Scholar 

  • Borozdin K, Gilfanov M, Sunyaev R, Churazov E, Loznikov V, Yamburenko N, Skinner GK, Patterson TG, Willmore AP, Emam O, Brinkman AC, Heise J, Int-Zand JJM, Jager R (1990) KS:1947+300—a new transient X-ray source in Cygnus. Sov Astron Lett 16:345

    ADS  Google Scholar 

  • Bouret J-C, Lanz T, Hillier DJ (2005) Lower mass loss rates in O-type stars: spectral signatures of dense clumps in the wind of two Galactic O4 stars. A&A 438(1):301–316. doi:10.1051/0004-6361:20042531

    Article  ADS  Google Scholar 

  • Bozzo E, Campana S, Stella L, Falanga M, Israel G, Rampy R, Smith D, Negueruela I (2008a) XMM-Newton and SWIFT observations of the supergiant fast X-ray transient SAXJ1818.6-1703. Astron Telegr 1493:1

  • Bozzo E, Falanga M, Stella L (2008b) Are there magnetars in high-mass X-ray binaries? The case of supergiant fast X-ray transients. Astrophys J 683:1031–1044. doi:10.1086/589990. arXiv:0805.1849

  • Bozzo E, Stella L, Israel G, Falanga M, Campana S (2008c) IGRJ16479-4514: the first eclipsing supergiant fast X-ray transient? Mon Not RAS 391:L108–L112. doi:10.1111/j.1745-3933.2008.00566.x. arXiv:0809.3642

  • Bozzo E, Giunta A, Stella L, Falanga M, Israel G, Campana S (2009) Swift observations of IGR J16479-4514 in outburst. A&A 502:21–25. doi:10.1051/0004-6361/200912131 arXiv:0906.0883

    Article  ADS  Google Scholar 

  • Bozzo E, Stella L, Ferrigno C, Giunta A, Falanga M, Campana S, Israel G, Leyder JC (2010) The supergiant fast X-ray transients XTE J1739-302 and IGR J08408-4503 in quiescence with XMM-Newton. A&A 519:A6. doi:10.1051/0004-6361/201014095 arXiv:1004.2059

    Article  ADS  Google Scholar 

  • Bozzo E, Ferrigno C, Falanga M, Walter R (2011a) INTEGRAL and Swift observations of IGR J19294+1816 in outburst. A&A 531:A65. doi:10.1051/0004-6361/201116729 arXiv:1105.2727

    Article  ADS  Google Scholar 

  • Bozzo E, Giunta A, Cusumano G, Ferrigno C, Walter R, Campana S, Falanga M, Israel G, Stella L (2011b) XMM-Newton observations of IGR J18410-0535: the ingestion of a clump by a supergiant fast X-ray transient. A&A 531:A130. doi:10.1051/0004-6361/201116726 arXiv:1106.5125

    Article  ADS  Google Scholar 

  • Bozzo E, Ferrigno C, Türler M, Manousakis A, Falanga M (2012a) IGR J18179-1621: an obscured X-ray pulsar discovered by INTEGRAL. Astrophys J Suppl 545:A83. doi:10.1051/0004-6361/201219344 arXiv:1207.4557

    Google Scholar 

  • Bozzo E, Pavan L, Ferrigno C, Falanga M, Campana S, Paltani S, Stella L, Walter R (2012b) XMM-Newton observations of four high mass X-ray binaries and IGR J17348-2045. A&A 544:A118. doi:10.1051/0004-6361/201218900 arXiv:1207.3719

    Article  ADS  Google Scholar 

  • Bozzo E, Romano P, Ferrigno C, Esposito P, Mangano V (2013) Observations of supergiant fast X-ray transients with LOFT. Adv Space Res 51:1593–1599. doi:10.1016/j.asr.2012.12.001 arXiv:1212.0323

    Article  ADS  Google Scholar 

  • Bozzo E, Romano P, Ducci L, Bernardini F, Falanga M (2015) Supergiant fast X-ray transients as an under-luminous class of supergiant X-ray binaries. Adv Space Res 55:1255–1263. doi:10.1016/j.asr.2014.11.012 arXiv:1411.4470

    Article  ADS  Google Scholar 

  • Burenin R, Mescheryakov A, Revnivtsev M, Bikmaev I, Sunyaev R (2006) Optical identification of four INTEGRAL sources. Astron Telegr 880:1

    ADS  Google Scholar 

  • Burenin RA, Mescheryakov AV, Revnivtsev MG, Sazonov SY, Bikmaev IF, Pavlinsky MN, Sunyaev RA (2008) New active galactic nuclei among the INTEGRAL and SWIFT X-ray sources. Astron Lett 34:367–374. doi:10.1134/S1063773708060017 arXiv:0802.1791

    Article  ADS  Google Scholar 

  • Burenin R, Makarov D, Uklein R, Revnivtsev M, Lutovinov A (2009) Optical identification of a hard X-ray source IGR J18151-1052. Astron Telegr 2193:1

    ADS  Google Scholar 

  • Caballero I, Wilms J (2012) X-ray pulsars: a review. Mem Soc Astron Ital 83:230 arXiv:1206.3124

    ADS  Google Scholar 

  • Caballero I, Pottschmidt K, Marcu DM, Barragan L, Ferrigno C, Klochkov D, Zurita Heras JA, Suchy S, Wilms J, Kretschmar P, Santangelo A, Kreykenbohm I, Fürst F, Rothschild R, Staubert R, Finger MH, Camero-Arranz A, Makishima K, Enoto T, Iwakiri W, Terada Y (2013) A double-peaked outburst of A 0535+26 observed with INTEGRAL, RXTE, and Suzaku. Astrophys J Lett 764:L23. doi:10.1088/2041-8205/764/2/L23. arXiv:1301.4856

  • Casares J, Ribas I, Paredes JM, Martí J, Allende Prieto C (2005a) Orbital parameters of the microquasar LS I +61 303. Mon Not RAS 360:1105–1109. doi:10.1111/j.1365-2966.2005.09106.x. arXiv:astro-ph/0504332

  • Casares J, Ribó M, Ribas I, Paredes JM, Martí J, Herrero A (2005b) A possible black hole in the \(\gamma \)-ray microquasar LS 5039. Mon Not RAS 364:899–908. doi:10.1111/j.1365-2966.2005.09617.x. arXiv:astro-ph/0507549

  • Castor JI, Abbott DC, Klein RI (1975) Radiation-driven winds in of stars. Astrophys J 195:157–174

    Article  ADS  Google Scholar 

  • Cassinelli JP, Olson GL (1979) The effects of coronal regions on the X-ray flux and ionization conditions in the winds of OB supergiants and Of stars. Astrophys J (Part 1) 229:304–317. doi:10.1086/156956

    ADS  Google Scholar 

  • Chakrabarty D, Koh T, Bildsten L, Prince TA, Finger MH, Wilson RB, Pendleton GN, Rubin BC (1995) Discovery of the 18.7 second accreting X-ray pulsar GRO J1948+32. Astrophys J 446:826. DOI:10.1086/175839

  • Chaty S (2010) High energy phenomena in supergiant X-ray binaries. In: Martí J, Luque-Escamilla PL, Combi JA (eds) Astronomical society of the pacific conference series, vol 422, pp 277–284. arXiv:1005.1995

  • Chaty S, Rahoui F (2012) Broadband ESO/VISIR-spitzer infrared spectroscopy of the obscured supergiant X-ray binary IGR J16318-4848. Astrophys J 751:150. doi:10.1088/0004-637X/751/2/150 arXiv:1205.2225

    Article  ADS  Google Scholar 

  • Chaty S, Rahoui F, Foellmi C, Tomsick JA, Rodriguez J, Walter R (2008) Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. I. The nature of the companion star. A&A 484:783–800. doi:10.1051/0004-6361:20078768 arXiv:0802.1774

    Article  ADS  Google Scholar 

  • Chenevez J, Budtz-Jorgensen C, Lund N, Westergaard NJ, Kretschmar P, Rodriguez J, Orr A, Hermsen W (2004) IGR J06074+2205 a new X-ray source discovered by INTEGRAL. Astron Telegr 223:1

    ADS  Google Scholar 

  • Chernyakova M, Lutovinov A, Capitanio F, Lund N, Gehrels N (2003) Igr J18483-0311. Astron Telegr 157:1

    ADS  Google Scholar 

  • Chernyakova M, Shtykovsky P, Lutovinov A, Revnivtsev M, Courvoisier T, Walter R, Shaw S, Cocco G, Attie D, Budtz-Jorgensen C, Hermsen W, Much R (2004) Transition to a hard state of 1RXP J130159.6-635806. Astron Telegr 251:1

  • Chernyakova M, Lutovinov A, Rodríguez J, Revnivtsev M (2005) Discovery and study of the accreting pulsar 2RXP J130159.6-635806. Mon Not RAS 364:455–461. doi:10.1111/j.1365-2966.2005.09548.x arXiv:astro-ph/0508515

    Article  ADS  Google Scholar 

  • Chiappini C, Matteucci F, Romano D (2001) Abundance gradients and the formation of the Milky Way. Astrophys J 554:1044–1058. doi:10.1086/321427 arXiv:astro-ph/0102134

    Article  ADS  Google Scholar 

  • Clark GW (2000) The orbit of the binary X-ray pulsar 4U 1538-52 from Rossi X-ray timing explorer observations. Astrophys J Lett 542:L131–L133. doi:10.1086/312926

    Article  ADS  Google Scholar 

  • Clark LL, Dolan JF (1999) The distance to eight X-ray sources derived from HIPPARCOS observations. A&A 350:1085–1088

    ADS  Google Scholar 

  • Clark GW, Schmidt GD, Angel JRP (1975) Mx 0656-07. IAU Circ 2843:1

    ADS  Google Scholar 

  • Clark GW, Woo JW, Nagase F, Makishima K, Sakao T (1990) Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538-52 observed by GINGA. Astrophys J 353:274–280. doi:10.1086/168614

    Article  ADS  Google Scholar 

  • Clark GW, Woo JW, Nagase F (1994) Properties of a B0 I stellar wind and interstellar grains derived from GINGA observations of the binary X-ray pulsar 4U 1538-52. Astrophys J 422:336–350. doi:10.1086/173729

    Article  ADS  Google Scholar 

  • Clark JS, Reig P, Goodwin SP, Larionov VM, Blay P, Coe MJ, Fabregat J, Negueruela I, Papadakis I, Steele IA (2001a) On the radio emitting high mass X-ray binary LS 5039. A&A 376:476–483. doi:10.1051/0004-6361:20010919

  • Clark JS, Tarasov AE, Okazaki AT, Roche P, Lyuty VM (2001b) Phase changes of the Be/X-ray binary X Persei. A&A 380:615–629. doi:10.1051/0004-6361:20011468

  • Clark DJ, Hill AB, Bird AJ, McBride VA, Scaringi S, Dean AJ (2009) Discovery of the orbital period in the supergiant fast X-ray transient IGR J17544-2619. Mon Not RAS 399:L113–L117. doi:10.1111/j.1745-3933.2009.00737.x arXiv:0908.1041

    Article  ADS  Google Scholar 

  • Clark DJ, Sguera V, Bird AJ, McBride VA, Hill AB, Scaringi S, Drave S, Bazzano A, Dean AJ (2010) The orbital period in the supergiant fast X-ray transient IGR J16465-4507. Mon Not RAS 406:L75–L79. doi:10.1111/j.1745-3933.2010.00885.x arXiv:1005.4763

    ADS  Google Scholar 

  • Coburn W, Heindl WA, Gruber DE, Rothschild RE, Staubert R, Wilms J, Kreykenbohm I (2001) Discovery of a cyclotron resonant scattering feature in the Rossi X-ray timing explorer spectrum of 4U 0352+309 (X Persei). Astrophys J 552:738–747. doi:10.1086/320565 arXiv:astro-ph/0101110

    Article  ADS  Google Scholar 

  • Coburn W, Heindl WA, Rothschild RE, Gruber DE, Kreykenbohm I, Wilms J, Kretschmar P, Staubert R (2002) Magnetic fields of accreting X-ray pulsars with the Rossi X-ray timing explorer. Astrophys J 580:394–412. doi:10.1086/343033 arXiv:astro-ph/0207325

    Article  ADS  Google Scholar 

  • Coburn W, Kretschmar P, Kreykenbohm I, McBride VA, Rothschild RE, Wilms J (2005) Multiple cyclotron lines in V0332+53. Astron Telegr 381:1

    ADS  Google Scholar 

  • Coe MJ, Payne BJ, Longmore A, Hanson CG (1988) The optical/IR counterpart to the newly-discovered X-ray source EXO 2030+375. Mon Not RAS 232:865–871

    Article  ADS  Google Scholar 

  • Coe MJ, Roche P, Everall C, Fabregat J, Buckley DAH, Smith RC, Reynolds AP, Jupp ID, MacGillivray HT (1994a) Discovery of the optical counterpart to the CGRO transient GRO:J1008-57. Mon Not RAS 270:L57

    Article  ADS  Google Scholar 

  • Coe MJ, Roche P, Everall C, Fishman GJ, Hagedon KS, Finger M, Wilson RB, Buckley DAH, Shrader C, Fabregat J, Polcaro VF, Giovannelli F, Villada M (1994b) Multiwaveband study of a major X-ray outburst from the Be/X-ray transient system A 1118-616. A&A 289:784–794

    ADS  Google Scholar 

  • Coe MJ, Fabregat J, Negueruela I, Roche P, Steele IA (1996) Discovery of the optical counterpart to the ASCA transient AX 1845.0-0433. Mon Not RAS 281:333–338

    Article  ADS  Google Scholar 

  • Coe MJ, Bird AJ, Hill AB, McBride VA, Schurch M, Galache J, Wilson CA, Finger M, Buckley DA, Romero-Colmenero E (2007) Now you see it, now you don’t—the circumstellar disc in the GRO J1008-57 system. Mon Not RAS 378:1427–1433. doi:10.1111/j.1365-2966.2007.11878.x arXiv:0704.2589

    Article  ADS  Google Scholar 

  • Cohen DH, Leutenegger MA, Wollman EE, Zsargó J, Hillier DJ, Townsend RHD, Owocki SP (2010) A mass-loss rate determination for \(\zeta \) Puppis from the quantitative analysis of X-ray emission-line profiles. Mon Not RAS 405:2391–2405. doi:10.1111/j.1365-2966.2010.16606.x arXiv:1003.0892

    ADS  Google Scholar 

  • Coleiro A, Chaty S (2013) Distribution of high-mass X-ray binaries in the Milky Way. Astrophys J 764:185. doi:10.1088/0004-637X/764/2/185 arXiv:1212.5460

    Article  ADS  Google Scholar 

  • Coleiro A, Chaty S, Zurita Heras JA, Rahoui F, Tomsick JA (2013) Infrared identification of high-mass X-ray binaries discovered by INTEGRAL. A&A 560:A108. doi:10.1051/0004-6361/201322382 arXiv:1310.0451

    Article  ADS  Google Scholar 

  • Cominsky L, Clark GW, Li F, Mayer W, Rappaport S (1978) Discovery of 3.6-s X-ray pulsations from 4U0115+63. Nature 273:367–369. doi:10.1038/273367a0

    Article  ADS  Google Scholar 

  • Corbet RHD (1984) Be/neutron star binaries—a relationship between orbital period and neutron star spin period. A&A 141:91–93

    ADS  Google Scholar 

  • Corbet RHD, Krimm HA (2009) A 117-day period in IGR J19294+1816. Astron Telegr 2008:1

    ADS  Google Scholar 

  • Corbet RHD, Krimm HA (2010) A 160 day period in the Be star X-ray binary IGR J01363+6610 from Swift BAT observations. Astron Telegr 3079:1

    ADS  Google Scholar 

  • Corbet RHD, Krimm HA (2013) Superorbital periodic modulation in wind-accretion high-mass X-ray binaries from Swift burst alert telescope observations. Astrophys J 778:45. doi:10.1088/0004-637X/778/1/45 arXiv:1309.4119

    Article  ADS  Google Scholar 

  • Corbet RHD, Mukai K (2002) The orbit and position of the X-ray pulsar XTE J1855-026: an eclipsing supergiant system. Astrophys J 577:923–928. doi:10.1086/342244 arXiv:astro-ph/0207181

    Article  ADS  Google Scholar 

  • Corbet RHD, Mukai K (2008) The orbital period of 4U 1210-64. Astron Telegr 1861:1

    ADS  Google Scholar 

  • Corbet RHD, Peele AG (2001) 4U 2206+54: an unusual high-mass X-ray binary with a 9.6 day orbital period but no strong pulsations. Astrophys J 562:936–942. doi:10.1086/323849 arXiv:astro-ph/0107131

    Article  ADS  Google Scholar 

  • Corbet RHD, Remillard R (2005) The orbital period of IGR J11435-6109. Astron Telegr 377:1

    ADS  Google Scholar 

  • Corbet RHD, Woo JW, Nagase F (1993) The orbit and pulse period of X:1538-522 from GINGA observations. A&A 276:52

    ADS  Google Scholar 

  • Corbet RHD, Finley JP, Peele AG (1999a) Evidence for a very slow X-ray pulsar in 2S 0114+650 from Rossi X-ray timing explorer all-sky monitor observations. Astrophys J 511:876–884. doi:10.1086/306727 arXiv:astro-ph/9809216

    Article  ADS  Google Scholar 

  • Corbet RHD, Marshall FE, Peele AG, Takeshima T (1999b) Rossi X-ray timing explorer observations of the X-ray pulsar XTE J1855-026: a possible new supergiant system. Astrophys J 517:956–963. doi:10.1086/307235 arXiv:astro-ph/9901125

    Article  ADS  Google Scholar 

  • Corbet RHD, Hannikainen DC, Remillard R (2004) The orbital period of IGR J19140+098. Astron Telegr 269:1

    ADS  Google Scholar 

  • Corbet R, Barbier L, Barthelmy S, Cummings J, Fenimore E, Gehrels N, Hullinger D, Krimm H, Markwardt C, Palmer D, Parsons A, Sakamoto T, Sato G, Tueller J, Team The Swift-Survey (2005a) Swift/BAT discovery of the orbital period of IGR J16320-4751. Astron Telegr 649:1

    ADS  Google Scholar 

  • Corbet RHD, Markwardt CB, Swank JH (2005b) Rossi X-ray timing explorer observations of the X-ray pulsar EXO 1722-363: a candidate eclipsing supergiant system. Astrophys J 633:377–383. doi:10.1086/444610 arXiv:astro-ph/0507259

    Article  ADS  Google Scholar 

  • Corbet R, Barbier L, Barthelmy S, Cummings J, Fenimore E, Gehrels N, Hullinger D, Krimm H, Markwardt C, Palmer D, Parsons A, Sakamoto T, Sato G, Tueller J, Remillard R (2006) Swift/BAT and RXTE/ASM discovery of the orbital period of IGR J16418-4532. Astron Telegr 779:1

    ADS  Google Scholar 

  • Corbet RHD, Barthelmy SD, Baumgartner WH, Krimm HA, Markwardt CB, Skinner GK, Tueller J (2010a) A 10 Day Period in IGR J16328-4726 from Swift/BAT observations. Astron Telegr 2588:1

  • Corbet RHD, Barthelmy SD, Baumgartner WH, Krimm HA, Markwardt CB, Skinner GK, Tueller J (2010b) A 49 day period in IGR J14488-5942/Swift J1448.4-5945 from Swift/BAT observations. Astron Telegr 2598:1

  • Corbet RHD, Krimm HA, Skinner GK (2010c) A 44 day period in AX J1700.2-4220 from Swift/BAT observations. Astron Telegr 2559:1

  • Courvoisier TJL, Walter R, Rodriguez J, Bouchet L, Lutovinov AA (2003) Igr J16318-4848. IAU Circ 8063:3

    ADS  Google Scholar 

  • Cox NLJ, Kaper L, Foing BH, Ehrenfreund P (2005) Diffuse interstellar bands of unprecedented strength in the line of sight towards high-mass X-ray binary. A&A 438:187–199. doi:10.1051/0004-6361:20042340

  • Crampton D, Hutchings JB, Cowley AP (1985) The supergiant X-ray binary system 2S 0114 + 650. Astrophys J 299:839–844. doi:10.1086/163750

    Article  ADS  Google Scholar 

  • Cusumano G, di Salvo T, Burderi L, Orlandini M, Piraino S, Robba N, Santangelo A (1998) Detection of a cyclotron line and its second harmonic in 4U1907+09. A&A 338:L79–L82 arXiv:astro-ph/9809167

    ADS  Google Scholar 

  • Cusumano G, La Parola V, Segreto A, Ferrigno C, Maselli A, Sbarufatti B, Romano P, Chincarini G, Giommi P, Masetti N, Moretti A, Parisi P, Tagliaferri G (2010) The palermo Swift-BAT hard X-ray catalogue. III. Results after 54 months of sky survey. A&A 524:A64. DOI:10.1051/0004-6361/201015249. arXiv:1009.0522

  • D’Ai’ A, Cusumano G, La Parola V, Segreto A (2010) Discovery of the orbital period in the Swift/Bat data of the highly absorbed HMXB IGR J17354-3255. Astron Telegr 2596:1

    Google Scholar 

  • D’Aì A, Cusumano G, La Parola V, Segreto A, di Salvo T, Iaria R, Robba NR (2011a) Evidence for a resonant cyclotron line in IGR J16493-4348 from the Swift-BAT hard X-ray survey. A&A 532:A73. doi:10.1051/0004-6361/201117035 arXiv:1208.0169

    Article  ADS  Google Scholar 

  • D’Aì A, La Parola V, Cusumano G, Segreto A, Romano P, Vercellone S, Robba NR (2011b) The Swift-BAT survey reveals the orbital period of three high-mass X-ray binaries. A&A 529:A30. doi:10.1051/0004-6361/201016401 arXiv:1102.4546

    Article  ADS  Google Scholar 

  • D’Aì A, Di Salvo T, Iaria R, García JA, Sanna A, Pintore F, Riggio A, Burderi L, Bozzo E, Dauser T, Matranga M, Galiano CG, Robba NR (2015) GRO J1744-28: an intermediate B-field pulsar in a low-mass X-ray binary. Mon Not R Astron Soc 449(4):4288–4303. doi:10.1093/mnras/stv531

    Article  ADS  Google Scholar 

  • Davidson K, Ostriker JP (1973) Neutron-star accretion in a stellar wind: model for a pulsed X-ray source. Astrophys J 179:585–598. doi:10.1086/151897

    Article  ADS  Google Scholar 

  • Davies RE, Pringle JE (1981) Spindown of neutron stars in close binary systems. II. Mon Not RAS 196:209–224

    Article  ADS  Google Scholar 

  • Davies B, Figer DF, Kudritzki R-P, MacKenty J, Najarro F, Herrero A (2007) A Massive Cluster of Red Supergiants at the Base of the Scutum-Crux Arm. Astrophys J 671(1):781–801. doi:10.1086/522224

    Article  ADS  Google Scholar 

  • Davison PJN, Watson MG, Pye JP (1977) The binary X-ray pulsar 3U 1538-52. Mon Not RAS 181:73P–79P

    Article  ADS  Google Scholar 

  • Day CSR, Tennant AF (1991) Dust scattering in the high-state eclipse of CEN X-3. Mon Not RAS 251:76–83

    Article  ADS  Google Scholar 

  • de Pasquale M, Barthelmy SD, Baumgartner WH, Burrows DN, Holland ST, Kennea JA, Mangano V, Palmer DM, Romano P, Sbarufatti B, Starling RLC, Vetere L (2010) Swift detection of outburst from the SFXT IGR J18410-0535. Astron Telegr 2661:1

  • de Plaa J, den Hartog PR, Kaastra JS, in’t Zand JJM, Mendez M, Hermsen W (2003) XMM-Newton followup of IGR J16318-4848. Astron Telegr 119:1

    Google Scholar 

  • Dean AJ, Bazzano A, Hill AB, Stephen JB, Bassani L, Barlow EJ, Bird AJ, Lebrun F, Sguera V, Shaw SE, Ubertini P, Walter R, Willis DR (2005) Global characteristics of the first IBIS/ISGRI catalogue sources: unveiling a murky episode of binary star evolution. A&A 443:485–494. doi:10.1051/0004-6361:20053513 arXiv:astro-ph/0508291

    Article  ADS  Google Scholar 

  • DeCesar ME, Boyd PT, Pottschmidt K, Wilms J, Suchy S, Miller MC (2013) The Be/X-ray binary Swift J1626.6-5156 as a variable cyclotron line source. Astrophys J 762:61. doi:10.1088/0004-637X/762/1/61. arXiv:1211.3109

  • Delgado-Martí H, Levine AM, Pfahl E, Rappaport SA (2001) The orbit of X Persei and its neutron star companion. Astrophys J 546:455–468. doi:10.1086/318236 arXiv:astro-ph/0004258

    Article  ADS  Google Scholar 

  • den Hartog PR, Kuiper LM, Corbet RHD, in’t Zand JJM, Hermsen W, Vink J, Remillard R, van der Klis M (2004) IGR J00370+6122—a new high-mass X-ray binary. Astron Telegr 281:1

    Google Scholar 

  • den Hartog PR, Hermsen W, Kuiper L, Vink J, in’t Zand JJM, Collmar W (2006) INTEGRAL survey of the Cassiopeia region in hard X rays. A&A 451:587–602. doi:10.1051/0004-6361:20054711 arXiv:astro-ph/0601644

    Article  ADS  Google Scholar 

  • Denis M, Bulik T, Marcinkowski R (2010) INTEGRAL observations of OAO 1657-415: gamma-ray tomography of a B super giant. Acta Astron 60:75–82

    ADS  Google Scholar 

  • Densham RH, Charles PA (1982) Optical photometry and spectroscopy of the X-ray pulsar 1E 1145.1-6141. Mon Not RAS 201:171–178

    Article  ADS  Google Scholar 

  • Dessart L, Owocki SP (2002) Emission profile variability in hot star winds. A pseudo-3D method based on radiation hydrodynamics simulations. A&A 383:1113–1124. doi:10.1051/0004-6361:20011826

    Article  ADS  Google Scholar 

  • Dessart L, Owocki SP (2003) Two-dimensional simulations of the line-driven instability in hot-star winds. A&A 406:L1–L4. doi:10.1051/0004-6361:20030810

    Article  ADS  Google Scholar 

  • Dessart L, Owocki SP (2005) 2D simulations of the line-driven instability in hot-star winds. II. Approximations for the 2D radiation force. A&A 437:657–666. doi:10.1051/0004-6361:20052778 arXiv:astro-ph/0503514

    Article  ADS  Google Scholar 

  • Devasia J, Paul B, James M, Indulekha K (2010) Variations in the X-ray eclipse transitions of Cen X-3. A&A 10:1127–1136. doi:10.1088/1674-4527/10/11/005 arXiv:1006.1035

    Google Scholar 

  • di Salvo T, Burderi L, Robba NR, Guainazzi M (1998) The two-component X-ray broadband spectrum of X Persei observed by BeppoSAX. Astrophys J 509:897–903. doi:10.1086/306525

    Article  ADS  Google Scholar 

  • Dolan JF (2011) Very low frequency QPO in 4U1700-37. arXiv:1107.1537 (e-prints)

  • Doroshenko VA, Doroshenko RF, Postnov KA, Cherepashchuk AM, Tsygankov SS (2008) A study of the X-ray pulsars X1845-024 and XTE J1858+034 based on INTEGRAL observations. A&A 52:138–151. doi:10.1134/S1063772908020054

    Google Scholar 

  • Doroshenko V, Santangelo A, Suleimanov V, Kreykenbohm I, Staubert R, Ferrigno C, Klochkov D (2010a) Is there a highly magnetized neutron star in GX 301-2? A&A 515:A10. doi:10.1051/0004-6361/200912951 arXiv:0907.3844

    Article  ADS  Google Scholar 

  • Doroshenko V, Suchy S, Santangelo A, Staubert R, Kreykenbohm I, Rothschild R, Pottschmidt K, Wilms J (2010b) RXTE observations of the 1A 1118-61 in an outburst, and the discovery of a cyclotron line. A&A 515:L1. doi:10.1051/0004-6361/201014858 arXiv:1005.4782

    Article  ADS  Google Scholar 

  • Doroshenko V, Santangelo A, Suleimanov V (2011) Witnessing the magnetospheric boundary at work in Vela X-1. A&A 529:A52. doi:10.1051/0004-6361/201116482 arXiv:1102.5254

    Article  ADS  Google Scholar 

  • Doroshenko V, Santangelo A, Ducci L, Klochkov D (2012a) Supergiant, fast, but not so transient 4U 1907+09. A&A 548:A19. doi:10.1051/0004-6361/201220085 arXiv:1210.4428

    Article  ADS  Google Scholar 

  • Doroshenko V, Santangelo A, Kreykenbohm I, Doroshenko R (2012b) The hard X-ray emission of X Persei. A&A 540:L1. doi:10.1051/0004-6361/201218878 arXiv:1202.6271

    Article  ADS  Google Scholar 

  • Doroshenko V, Ducci L, Santangelo A, Sasaki M (2014) Population of the Galactic X-ray binaries and eRosita. A&A 567:A7. doi:10.1051/0004-6361/201423766 arXiv:1405.0802

    Article  ADS  Google Scholar 

  • Dower R, Kelley R, Margon B, Bradt H (1977) 2S 0114+650. IAU Circ 3144:2

    ADS  Google Scholar 

  • Dower RG, Bradt HV, Doxsey RE, Jernigan JG, Kulik J, Apparao KMV (1978) Positions of galactic X-ray sources—at longitudes /l-II/ of 55-320 deg. Nature 273:364–367. doi:10.1038/273364a0

    Article  ADS  Google Scholar 

  • Drave SP, Clark DJ, Bird AJ, McBride VA, Hill AB, Sguera V, Scaringi S, Bazzano A (2010) Discovery of the 51.47-d orbital period in the supergiant fast X-ray transient XTE J1739-302 with INTEGRAL. Mon Not RAS 409:1220–1226. doi:10.1111/j.1365-2966.2010.17383.x arXiv:1007.3379

    Article  ADS  Google Scholar 

  • Drave SP, Bird AJ, Townsend LJ, Hill AB, McBride VA, Sguera V, Bazzano A, Clark DJ (2012) X-ray pulsations from the region of the supergiant fast X-ray transient IGR J17544-2619. A&A 539:A21. doi:10.1051/0004-6361/201117947 arXiv:1201.2284

    Article  ADS  Google Scholar 

  • Drave SP, Bird AJ, Sidoli L, Sguera V, McBride VA, Hill AB, Bazzano A, Goossens ME (2013) INTEGRAL and XMM-Newton observations of IGR J16418-4532: evidence of accretion regime transitions in a supergiant fast X-ray transient. Mon Not RAS 433:528–542. doi:10.1093/mnras/stt754 arXiv:1305.0430

    Article  ADS  Google Scholar 

  • Drave SP, Bird AJ, Sidoli L, Sguera V, Bazzano A, Hill AB, Goossens ME (2014) New insights on accretion in supergiant fast X-ray transients from XMM-Newton and INTEGRAL observations of IGR J17544-2619. Mon Not RAS 439:2175–2185. doi:10.1093/mnras/stu110 arXiv:1401.3570

    Article  ADS  Google Scholar 

  • Dubus G (2013) Gamma-ray binaries and related systems. A&A 21:64. doi:10.1007/s00159-013-0064-5 arXiv:1307.7083

    Article  Google Scholar 

  • Ducci L, Sidoli L, Paizis A, Mereghetti S, Pizzochero PM (2008) INTEGRAL observations of the 2007 outburst of the Be transient SAX J2103.5+4545. In: Proceedings of the 7th INTEGRAL workshop. arXiv:0810.5453

  • Ducci L, Sidoli L, Paizis A (2010) INTEGRAL results on supergiant fast X-ray transients and accretion mechanism interpretation: ionization effect and formation of transient accretion discs. Mon Not RAS 408:1540–1550. doi:10.1111/j.1365-2966.2010.17216.x

    Article  ADS  Google Scholar 

  • Ducci L, Doroshenko V, Sasaki M, Santangelo A, Esposito P, Romano P, Vercellone S (2013a) Spectral and temporal properties of the supergiant fast X-ray transient IGR J18483-0311 observed by INTEGRAL. A&A 559:A135. doi:10.1051/0004-6361/201322299 arXiv:1310.4728

    Article  ADS  Google Scholar 

  • Ducci L, Romano P, Esposito P, Bozzo E, Krimm HA, Vercellone S, Mangano V, Kennea JA (2013b) Swift/XRT orbital monitoring of the candidate supergiant fast X-ray transient IGR J17354-3255. A&A 556:A72. doi:10.1051/0004-6361/201321635 arXiv:1306.6443

    Article  ADS  Google Scholar 

  • Elsner RF, Lamb FK (1977) Accretion by magnetic neutron stars. I—magnetospheric structure and stability. Astrophys J 215:897–913. doi:10.1086/155427

    Article  ADS  Google Scholar 

  • Elvis M, Plummer D, Schachter J, Fabbiano G (1992) The Einstein slew survey. Astrophys J Suppl 80:257–303. doi:10.1086/191665

    Article  ADS  Google Scholar 

  • Eversberg T, Lepine S, Moffat AFJ (1998) Outmoving clumps in the wind of the hot O supergiant zeta puppis. Astrophys J 494:799–805. doi:10.1086/305218

  • Falanga M, Bozzo E, Walter R, Sarty GE, Stella L (2011) Searching for orbital periods of supergiant fast X-ray transients. J Am Assoc Var Star Obs 39:110

    ADS  Google Scholar 

  • Falanga M, Bozzo E, Lutovinov A, Bonnet-Bidaud JM, Fetisova Y, Puls J (2015) The ephemeris, orbital decay, and masses of 10 eclipsing HMXBs. arXiv:1502.07126 (e-prints)

  • Farrell SA, Sood RK, O’Neill PM (2006) Super-orbital period in the high-mass X-ray binary 2S 0114+650. Mon Not RAS 367:1457–1462. doi:10.1111/j.1365-2966.2006.10150.x arXiv:astro-ph/0502008

    Article  ADS  Google Scholar 

  • Farrell SA, Sood RK, O’Neill PM, Dieters S (2008) A detailed study of 2S 0114+650 with the Rossi X-ray timing explorer. Mon Not RAS 389:608–628. doi:10.1111/j.1365-2966.2008.13588.x arXiv:0710.1243

    Article  ADS  Google Scholar 

  • Feigelson ED, Gaffney JA III, Garmire G, Hillenbrand LA, Townsley L (2003) X-rays in the orion nebula cluster: constraints on the origins of magnetic activity in pre-main-sequence stars. Astrophys J 584:911–930. doi:10.1086/345811 arXiv:astro-ph/0211049

    Article  ADS  Google Scholar 

  • Feldmeier A (1995) Time-dependent structure and energy transfer in hot star winds. A&A 299:523–544

  • Feldmeier A, Puls J, Pauldrach AWA (1997) A possible origin for X-rays from O stars. A&A 322:878–895

    ADS  Google Scholar 

  • Ferrigno C, Segreto A, Mineo T, Santangelo A, Staubert R (2008) INTEGRAL observation of the accreting pulsar 1E1145.1-6141. A&A 479:533–539. doi:10.1051/0004-6361:20078643 arXiv:0712.1274

    Article  ADS  Google Scholar 

  • Ferrigno C, Becker PA, Segreto A, Mineo T, Santangelo A (2009) Study of the accreting pulsar 4U 0115+63 using a bulk and thermal Comptonization model. A&A 498:825–836. doi:10.1051/0004-6361/200809373 arXiv:0902.4392

    Article  ADS  Google Scholar 

  • Filippova EV, Lutovinov AA, Shtykovsky PE, Revnivtsev MG, Burenin RA, Arefiev VA, Pavlinsky MN, Sunyaev RA (2004) Broadband observations of the transient X-ray pulsar SAX J2103.5+4545. Astron Lett 30:824–833. doi:10.1134/1.1833433 arXiv:astro-ph/0410590

    Article  ADS  Google Scholar 

  • Filippova EV, Tsygankov SS, Lutovinov AA, Sunyaev RA (2005) Hard spectra of X-ray pulsars from INTEGRAL data. Astron Lett 31:729–747. doi:10.1134/1.2123288 arXiv:astro-ph/0509525

    Article  ADS  Google Scholar 

  • Filliatre P, Chaty S (2004) The optical/near-infrared counterpart of the INTEGRAL obscured source IGR J16318-4848: an sgB in a high-mass X-ray binary? Astrophys J 616:469–484. doi:10.1086/424869 arXiv:astro-ph/0408407

    Article  ADS  Google Scholar 

  • Finger MH, Wilson RB, Chakrabarty D (1996a) Reappearance of the X-ray binary pulsar 2S 1417-624. Astrophys J Suppls 120:C209

    ADS  Google Scholar 

  • Finger MH, Wilson RB, Harmon BA (1996b) Quasi-periodic oscillations during a giant outburst of A0535+262. Astrophys J 459:288. doi:10.1086/176892

    Article  ADS  Google Scholar 

  • Finger MH, Ikhsanov NR, Wilson-Hodge CA, Patel SK (2010) Spin-down of the long-period accreting pulsar 4U 2206+54. Astrophys J 709:1249–1256. doi:10.1088/0004-637X/709/2/1249 arXiv:0908.4042

    Article  ADS  Google Scholar 

  • Fiocchi M, Sguera V, Bazzano A, Bassani L, Bird AJ, Natalucci L, Ubertini P (2010) IGR J16328-4726: a new candidate supergiant fast X-ray transient. Astrophys J Lett 725:L68–L72. doi:10.1088/2041-8205/725/1/L68. arXiv:1010.3529

  • Fiocchi M, Bazzano A, Bird AJ, Drave SP, Natalucci L, Persi P, Piro L, Ubertini P (2013) The INTEGRAL source IGR J16328-4726: a high-mass X-ray binary from the BeppoSAX era. Astrophys J 762:19. doi:10.1088/0004-637X/762/1/19 arXiv:1210.3840

    Article  ADS  Google Scholar 

  • Forman W, Tananbaum H, Jones C (1976) UHURU observations of the galactic plane in 1970, 1971, and 1972. Astrophys J Lett 206:L29–L35. doi:10.1086/182126

    Article  ADS  Google Scholar 

  • Forman W, Jones C, Cominsky L, Julien P, Murray S, Peters G, Tananbaum H, Giacconi R (1978) The fourth Uhuru catalog of X-ray sources. Astrophys J Suppl 38:357–412. doi:10.1086/190561

    Article  ADS  Google Scholar 

  • Foschini L, Rodriguez J, Walter R (2003) Igr J16318-4848. IAU Circ 8076:2

    ADS  Google Scholar 

  • Frail DA, Hjellming RM (1991) Distance and total column density to the periodic radio star LSI + 61 deg 303. AJ 101:2126–2130. doi:10.1086/115833

    Article  ADS  Google Scholar 

  • Frank J, King AR, Raine DJ (1992) Accretion power in astrophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Fullerton AW, Massa DL, Prinja RK (2006) The discordance of mass-loss estimates for galactic O-type stars. Astrophys J 637(2):1025–1039. doi:10.1086/498560

    Article  ADS  Google Scholar 

  • Fürst F, Kreykenbohm I, Pottschmidt K, Wilms J, Hanke M, Rothschild RE, Kretschmar P, Schulz NS, Huenemoerder DP, Klochkov D, Staubert R (2010) X-ray variation statistics and wind clumping in Vela X-1. A&A 519:A37. doi:10.1051/0004-6361/200913981. arXiv:1005.5243

  • Fürst F, Kreykenbohm I, Suchy S, Barragán L, Wilms J, Rothschild RE, Pottschmidt K (2011a) 4U 1909+07: a well-hidden pearl. A&A 525:A73. doi:10.1051/0004-6361/201015636. arXiv:1011.5052

  • Fürst F, Suchy S, Kreykenbohm I, Barragán L, Wilms J, Pottschmidt K, Caballero I, Kretschmar P, Ferrigno C, Rothschild RE (2011b) Study of the many fluorescent lines and the absorption variability in GX 301-2 with XMM-Newton. A&A 535:A9. doi:10.1051/0004-6361/201117665 arXiv:1110.2700

    Article  ADS  Google Scholar 

  • Fürst F, Pottschmidt K, Wilms J, Kennea J, Bachetti M, Bellm E, Boggs SE, Chakrabarty D, Christensen FE, Craig WW, Hailey CJ, Harrison F, Stern D, Tomsick JA, Walton DJ, Zhang W (2014a) NuSTAR discovery of a cyclotron line in KS 1947+300. Astrophys J Lett 784:L40. doi:10.1088/2041-8205/784/2/L40. arXiv:1403.1901

  • Fürst F, Pottschmidt K, Wilms J, Tomsick JA, Bachetti M, Boggs SE, Christensen FE, Craig WW, Grefenstette BW, Hailey CJ, Harrison F, Madsen KK, Miller JM, Stern D, Walton DJ, Zhang W (2014b) NuSTAR discovery of a luminosity dependent cyclotron line energy in Vela X-1. Astrophys J 780:133. doi:10.1088/0004-637X/780/2/133 arXiv:1311.5514

    Article  ADS  Google Scholar 

  • Galloway D, Remillard R, Morgan E, Swank J (2003) Recurrent transient X1901+031. Astron Telegr 118:1

    ADS  Google Scholar 

  • Galloway DK, Morgan EH, Levine AM (2004) A frequency glitch in an accreting pulsar. Astrophys J 613:1164–1172. doi:10.1086/423265 arXiv:astro-ph/0401476

    Article  ADS  Google Scholar 

  • Galloway DK, Wang Z, Morgan EH (2005) Discovery of pulsations in the X-ray transient 4U 1901+03. Astrophys J 635:1217–1223. doi:10.1086/497573 arXiv:astro-ph/0506247

    Article  ADS  Google Scholar 

  • Giacconi R, Gursky H, Kellogg E, Schreier E, Tananbaum H (1971) Discovery of periodic X-ray pulsations in centaurus X-3 from UHURU. Astrophys J Lett 167:L67. doi:10.1086/180762

    Article  ADS  Google Scholar 

  • Giacconi R, Murray S, Gursky H, Kellogg E, Schreier E, Tananbaum H (1972) The Uhuru catalog of X-ray sources. Astrophys J 178:281–308. doi:10.1086/151790

    Article  ADS  Google Scholar 

  • Gilfanov M (2004) Low-mass X-ray binaries as a stellar mass indicator for the host galaxy. Mon Not RAS 349:146–168. doi:10.1111/j.1365-2966.2004.07473.x arXiv:astro-ph/0309454

    Article  ADS  Google Scholar 

  • Giovannelli F, Graziati LS (1992) A 0535 + 26/HDE 245770—a typical X-ray/Be system. Space Sci Rev 59:1–81. doi:10.1007/BF01262537

    Article  ADS  Google Scholar 

  • Giunta A, Bozzo E, Bernardini F, Israel G, Stella L, Falanga M, Campana S, Bazzano A, Dean AJ, Mendez M (2009) The supergiant fast X-ray transient IGRJ18483-0311 in quiescence: XMM-Newton, Swift and Chandra observations. Mon Not RAS 399:744–749. doi:10.1111/j.1365-2966.2009.15174.x arXiv:0905.4866

    Article  ADS  Google Scholar 

  • Gnedin IN, Sunyaev RA (1974) Polarization of optical and X-radiation from compact thermal sources with magnetic field. A&A 36:379–394

    ADS  Google Scholar 

  • González-Galán A (2014) Fundamental properties of High-Mass X-ray Binaries. PhD Thesis, University of Alicante. arXiv:1503.01087

  • González-Galán A, Negueruela I, Castro N, Simón-Díaz S, Lorenzo J, Vilardell F (2014) Astrophysical parameters and orbital solution of the peculiar X-ray transient IGR J00370+6122. A&A 566:A131. doi:10.1051/0004-6361/201423554. arXiv:1404.4341

  • González-Riestra R, Oosterbroek T, Kuulkers E, Orr A, Parmar AN (2004) XMM-Newton observations of the INTEGRAL X-ray transient IGR J17544-2619. A&A 420:589–594. doi:10.1051/0004-6361:20035940. arXiv:astro-ph/0402293

  • Goossens ME, Bird AJ, Drave SP, Bazzano A, Hill AB, McBride VA, Sguera V, Sidoli L (2013) Discovering a 5.72-d period in the supergiant fast X-ray transient AX J1845.0-0433. Mon Not RAS 434:2182–2187. doi:10.1093/mnras/stt1166. arXiv:1307.0709

  • Götz D, Falanga M, Senziani F, De Luca A, Schanne S, von Kienlin A (2007) IGR J08408-4503: a new recurrent supergiant fast X-ray transient. Astrophys J Lett 655:L101-L104. doi:10.1086/511818. arXiv:astro-ph/0612437

  • Göğüş E, Kreykenbohm I, Belloni TM (2011) Discovery of a peculiar dip from GX 301-2. A&A 525:L6. doi:10.1051/0004-6361/201015905. arXiv:1011.3899

  • Grebenev SA, Sunyaev RA (2007) The first observation of AX J1749.1-2733 in a bright X-ray state. Another fast transient revealed by INTEGRAL. Astron Lett 33:149–158. doi:10.1134/S1063773707030024

  • Grebenev SA, Sunyaev RA (2010) New fast X-ray transient IGR J18462-0223 discovered by the INTEGRAL observatory. Astron Lett 36:533–539. doi:10.1134/S1063773710080013. arXiv:1009.3440

  • Grebenev SA, Ubertini P, Chenevez J, Mowlavi N, Roques JP, Gehrels N, Kuulkers E (2004a) New X-ray transient IGR J11435-6109 discovered with INTEGRAL. Astron Telegr 350:1

    ADS  Google Scholar 

  • Grebenev SA, Ubertini P, Chenevez J, Orr A, Sunyaev RA (2004b) New X-ray transient IGR J01363+6610 discovered by INTEGRAL. Astron Telegr 275:1

    ADS  Google Scholar 

  • Grimm HJ, Gilfanov M, Sunyaev R (2002) The Milky Way in X-rays for an outside observer. Log(N)-Log(S) and luminosity function of X-ray binaries from RXTE/ASM data. A&A 391:923–944. doi:10.1051/0004-6361:20020826. arXiv:astro-ph/0109239

  • Grimm HJ, Gilfanov M, Sunyaev R (2003) High-mass X-ray binaries as a star formation rate indicator in distant galaxies. Mon Not RAS 339:793–809. doi:10.1046/j.1365-8711.2003.06224.x. arXiv:astro-ph/0205371

  • Grindlay JE, Petro LD, McClintock JE (1984) Optical identification of 2S 1417-62. Astrophys J 276:621–624. doi:10.1086/161650

    Article  ADS  Google Scholar 

  • Grove JE, Strickman MS, Johnson WN, Kurfess JD, Kinzer RL, Starr CH, Jung GV, Kendziorra E, Kretschmar P, Maisack M, Staubert R (1995) The soft gamma-ray spectrum of A0535+26: detection of an absorption feature at 110 keV by OSSE. Astrophys J Lett 438:L25–L28. doi:10.1086/187706

    Article  ADS  Google Scholar 

  • Grupe D, Kennea J, Evans P, Romano P, Markwardt C, Chester M (2009) Swift detection of a flare from IGR J16328-4726. Astron Telegr, 2075:1

  • Guesten R, Mezger PG (1982) Star formation and abundance gradients in the galaxy. Vistas Astron 26:159–224. doi:10.1016/0083-6656(82)90005-8

    Article  ADS  Google Scholar 

  • Gvaramadze VV, Röser S, Scholz RD, Schilbach E (2011) 4U 1907+09: an HMXB running away from the Galactic plane. A&A 529:A14. doi:10.1051/0004-6361/201016256. arXiv:1102.2437

  • Haberl F, White NE, Kallman TR (1989) An EXOSAT X-ray observation of one orbital cycle of 4U 1700-37/HD 153919. Astrophys J 343:409–425. doi:10.1086/167714

    Article  ADS  Google Scholar 

  • Halpern JP (2006) Optical classification of three swift BAT/XRT sources at low galactic latitude. Astron Telegr 847:1

    ADS  Google Scholar 

  • Halpern JP (2012a) Discovery of 46.6 s X-ray pulsations from the candidate for IGR J22534+6243. Astron Telegr 4240:1

    ADS  Google Scholar 

  • Halpern JP (2012b) Swift detection of 11.82 s pulsations from IGR J18179-1621. Astron Telegr 3949:1

    ADS  Google Scholar 

  • Halpern JP, Gotthelf EV (2006) Igr J18450-0435 = AX J18450-0433. Astron Telegr 692:1

    ADS  Google Scholar 

  • Halpern JP, Tyagi S (2005) Be star counterpart of X-ray transient IGR J06074+2205. Astron Telegr 682:1

    ADS  Google Scholar 

  • Hannikainen DC, Rawlings MG, Muhli P, Vilhu O, Schultz J, Rodriguez J (2007) The nature of the infrared counterpart of IGR J19140+0951. Mon Not RAS 380:665–668. doi:10.1111/j.1365-2966.2007.12092.x. arXiv:0706.1129

  • Harding AK, Lai D (2006) Physics of strongly magnetized neutron stars. Rep Prog Phys 69:2631–2708. doi:10.1088/0034-4885/69/9/R03. arXiv:astro-ph/0606674

  • Heindl WA, Chakrabarty D (1999) New results on cyclotron lines and neutron star magnetic fields. In: Aschenbach B, Freyberg MJ (eds) Highlights in X-ray astronomy. Max-Planck-Institut für extraterrestrische Physik, Garching, p 25

  • Heindl WA, Coburn W, Gruber DE, Pelling MR, Rothschild RE, Wilms J, Pottschmidt K, Staubert R (1999) Discovery of a third harmonic cyclotron resonance scattering feature in the X-ray spectrum of 4U 0115+63. Astrophys J Lett 521:L49–L53. doi:10.1086/312172. arXiv:astro-ph/9904222

  • Heindl WA, Coburn W, Gruber DE, Rothschild RE, Kreykenbohm I, Wilms J, Staubert R (2001) Discovery of a cyclotron resonance scattering feature in the X-ray spectrum of XTE J1946+274. Astrophys J Lett 563:L35–L39. doi:10.1086/339017. arXiv:astro-ph/0112468

  • Heindl W, Coburn W, Kreykenbohm I, Wilms J (2003) Cyclotron line in XTE J0658-073. Astron Telegr 200:1

    ADS  Google Scholar 

  • Hemphill PB, Rothschild RE, Caballero I, Pottschmidt K, Kühnel M, Fürst F, Wilms J (2013) Measurements of cyclotron features and pulse periods in the high-mass X-ray binaries 4U 1538-522 and 4U 1907+09 with the international gamma-ray astrophysics laboratory. Astrophys J 777:61. doi:10.1088/0004-637X/777/1/61. arXiv:1309.0875

  • Heras JAZ, Walter R (2004) IGR J16465-4507 counterpart. Astron Telegr 336:1

    ADS  Google Scholar 

  • Hickox RC, Narayan R, Kallman TR (2004) Origin of the soft excess in X-ray pulsars. Astrophys J 614:881–896

    Article  ADS  Google Scholar 

  • Hill AB, Walter R, Knigge C, Bazzano A, Bélanger G, Bird AJ, Dean AJ, Galache JL, Malizia A, Renaud M, Stephen J, Ubertini P (2005) The 1–50 keV spectral and timing analysis of IGR J18027-2016: an eclipsing, high mass X-ray binary. A&A 439:255–263. doi:10.1051/0004-6361:20052937. arXiv:astro-ph/0505078

  • Huckle HE, Mason KO, White NE, Sanford PW, Maraschi L, Tarenghi M, Tapia S (1977) Discovery of two periodic X-ray pulsators. Mon Not RAS 180:21P–26P

    Article  ADS  Google Scholar 

  • Hulleman F, in ’t Zand JJM, Heise J (1998) Discovery of the transient X-ray pulsar SAX J2103.5+4545. A&A 337:L25–L28. arXiv:astro-ph/9807280

  • Hutchings JB, Crampton D (1981) The optical counterpart of 4U 0115+63. Astrophys J 247:222. doi:10.1086/159028

    Article  ADS  Google Scholar 

  • Hutchings JB, Crampton D, Cowley AP (1981) The X-ray pulsars 2S 1145-619 and 1E 1145.1-6141: optical identifications and a nearby supernova remnant. Astron J 86:871–874. doi:10.1086/112959

    Article  ADS  Google Scholar 

  • Ibarra A, Matt G, Guainazzi M, Kuulkers E, Jiménez-Bailón E, Rodriguez J, Nicastro F, Walter R (2007) The XMM-Newton/INTEGRAL monitoring campaign of IGR J16318-4848. A&A 465:501–507. doi:10.1051/0004-6361:20066225. arXiv:astro-ph/0611343

  • Ikhsanov NR (2007) The origin of long-period X-ray pulsars. Mon Not RAS 375:698–704. doi:10.1111/j.1365-2966.2006.11331.x. arXiv:astro-ph/0611442

  • Ikhsanov NR, Finger MH (2012) Signs of magnetic accretion in the X-ray pulsar binary GX 301-2. Astrophys J 753:1. doi:10.1088/0004-637X/753/1/1. arXiv:1204.4975

  • Illarionov AF, Sunyaev RA (1975) Why the number of Galactic X-ray stars is so small? A&A 39:185

    ADS  Google Scholar 

  • in’t Zand JJM (2005) Chandra observation of the fast X-ray transient IGR J17544-2619: evidence for a neutron star? A&A 441:L1–L4. doi:10.1051/0004-6361:200500162. arXiv:astro-ph/0508240

  • in’t Zand J, Heise J, Smith M, Muller JM, Ubertini P, Bazzano A (1998a) SAX J1818.6-1703 and KS 1741-293. IAU Circ 6840:2

    ADS  Google Scholar 

  • in’t Zand JJM, Baykal A, Strohmayer TE (1998b) Recent X-ray measurements of the accretion-powered pulsar 4U 1907+09. Astrophys J 496:386. doi:10.1086/305362. arXiv:astro-ph/9711292

  • in’t Zand JJM, Corbet RHD, Marshall FE (2001) Discovery of a 75 day orbit in XTE J1543-568. Astrophys J Lett 553:L165–L168. doi:10.1086/320688. arXiv:astro-ph/0104468

  • in’t Zand JJM, Ubertin P, Del Santo M (2003) Igr J16320-4751 and Igr J16318-4848. IAU Circ 8077:2

    ADS  Google Scholar 

  • in’t Zand JJM, Kuiper L, den Hartog PR, Hermsen W, Corbet RHD (2007) A probable accretion-powered X-ray pulsar in IGR J00370+6122. A&A 469:1063–1068. doi:10.1051/0004-6361:20077189

    Article  ADS  Google Scholar 

  • Islam N, Maitra C, Pradhan P, Paul B (2015) A Suzaku view of IGR J16393-4643. Mon Not RAS 446:4148–4154. doi:10.1093/mnras/stu2395. arXiv:1411.3108

  • Israel GL, Negueruela I, Campana S, Covino S, Di Paola A, Maxwell DH, Norton AJ, Speziali R, Verrecchia F, Stella L (2001) The identification of the optical/IR counterpart of the 29.5-s transient X-ray pulsar GS 1843+009. A&A 371:1018–1023. doi:10.1051/0004-6361:20010417. arXiv:astro-ph/0103421

  • Jain C, Paul B, Maitra C (2011) Detection of periodic X-ray modulation of SFXT IGR J16207-5129 in the Swift-BAT light curve. Astron Telegr 3785:1

    ADS  Google Scholar 

  • Jaisawal GK, Naik S, Paul B (2013) Possible detection of a cyclotron resonance scattering feature in the X-ray pulsar 4U 1909+07. Astrophys J 779:54. doi:10.1088/0004-637X/779/1/54. arXiv:1310.0948

  • Janot-Pacheco E, Ilovaisky SA, Chevalier C (1981) A photometric and spectroscopic study of He 3-640 /equals A1118-61/. A&A 99:274–284

    ADS  Google Scholar 

  • Jenke PA, Finger MH, Wilson-Hodge CA, Camero-Arranz A (2012) Orbital decay and evidence of disk formation in the X-ray binary pulsar OAO 1657-415. Astrophys J 759:124. doi:10.1088/0004-637X/759/2/124. arXiv:1112.5190

  • Johnston S, Manchester RN, Lyne AG, Bailes M, Kaspi VM, Qiao G, D’Amico N (1992) PSR 1259-63: a binary radio pulsar with a be star companion. Astrophys J Lett 387:L37–L41. doi:10.1086/186300

    Article  ADS  Google Scholar 

  • Johnston S, Manchester RN, Lyne AG, Nicastro L, Spyromilio J (1994) Radio and optical observations of the PSR:B1259-63/SS:2883 be-star binary system. Mon Not RAS 268:430

    Article  ADS  Google Scholar 

  • Jones C, Forman W, Tananbaum H, Schreier E, Gursky H, Kellogg E, Giacconi R (1973) Evidence for the binary nature of 2u 1700-37. Astrophys J Lett 181:L43. doi:10.1086/181181

    Article  ADS  Google Scholar 

  • Jones CA, Chetin T, Liller W (1974) Optical studies of UHURU sources. VIII. Observations of 92 possible counterparts of X-ray sources. Astrophys J Lett 190:L1. doi:10.1086/181488

    Article  ADS  Google Scholar 

  • Kaper L, Lamers HJGLM, Ruymaekers E, van den Heuvel EPJ, Zuiderwijk EJ (1995) Wray 977 (GX 301-2): a hypergiant with pulsar companion. A&A 300:446–452. arXiv:astro-ph/9503003

  • Kaper L, van Loon JT, Augusteijn T, Goudfrooij P, Patat F, Waters LBFM, Zijlstra AA (1997) Discovery of a bow shock around VELA X-1. Astrophys J Lett 475:L37–L40. doi:10.1086/310454. arXiv:astro-ph/9611017

  • Kaper L, van der Meer A, Najarro F (2006) VLT/UVES spectroscopy of Wray 977, the hypergiant companion to the X-ray pulsar GX301-2. A&A 457:595–610. doi:10.1051/0004-6361:20065393. arXiv:astro-ph/0607613

  • Kaplan DL, Moon DS, Reach WT (2006) Long-wavelength excesses in two highly obscured high-mass X-ray binaries: IGR J16318-4848 and GX 301-2. Astrophys J Lett 649:L107–L110. doi:10.1086/508369

    Article  ADS  Google Scholar 

  • Karasev D, Tsygankov S, Lutovinov A, Churazov E, Sunyaev R (2007) Discovery of X-ray pulsations from the HMXB AX J1749.1-2733. Astron Telegr 1245:1. arXiv:0711.4559

  • Karasev DI, Tsygankov SS, Lutovinov AA (2008) Discovery of X-ray pulsations from the HMXB source AXJ1749.1-2733. Mon Not RAS 386:L10–L14. doi:10.1111/j.1745-3933.2008.00449.x. arXiv:0801.3247

  • Karasev DI, Lutovinov AA, Burenin RA (2010) AXJ1749.1-2733 and AXJ1749.2-2725: the close pair of X-ray pulsars behind the Galactic Centre. Mon Not RAS 409:L69–L73. doi:10.1111/j.1745-3933.2010.00949.x. arXiv:1009.1229

  • Karasev DI, Revnivtsev MG, Lutovinov AA, Burenin RA (2010b) Investigation of the stellar population and determination of interstellar extinction toward the Chandra Bulge Field based on RTT-150 data. Astron Lett 36:788–795. doi:10.1134/S1063773710110046

    Article  ADS  Google Scholar 

  • Karasev DI, Lutovinov AA, Revnivtsev MG, Krivonos RA (2012) Accurate localization and identification of six hard X-ray sources from Chandra and XMM-Newton data. Astron Lett 38:629–637. doi:10.1134/S1063773712100039. arXiv:1209.2945

  • Kaur R, Paul B, Kumar B, Sagar R (2008) Multiwavelength study of the transient X-ray binary IGR J01583+6713. Mon Not RAS 386:2253–2261. doi:10.1111/j.1365-2966.2008.13233.x. arXiv:0803.1113

  • Kawabata Nobukawa K, Nobukawa M, Tsuru TG, Koyama K (2012) Suzaku observation of the supergiant fast X-ray transient AX J1841.0-0536. Publ ASJ 64:99. doi:10.1093/pasj/64.5.99

    ADS  Google Scholar 

  • Keek S, Kuiper L, Hermsen W (2006) The discovery of five new hard X-ray sources in the Circinus region by INTEGRAL. Astron Telegr 810:1

    ADS  Google Scholar 

  • Kelley RL, Doxsey RE, Jernigan JG, Rappaport S, Apparao KMV, Naranan S (1981) Discovery of X-ray pulsations from 2S 1417-624. Astrophys J 243:251–256. doi:10.1086/158591

    Article  ADS  Google Scholar 

  • Kendziorra E, Mony B, Kretschmar P, Maisack M, Staubert R, Doebereiner S, Englhauser J, Pietsch W, Reppin C, Truemper J (1992) Hard X ray observations of VELA X-1 and A0535+26 with HEXE: discovery of cyclotron lines. In: Shrader CR, Gehrels N, Dennis B (eds) NASA conference publication, vol 3137, p 217

  • Kendziorra E, Kretschmar P, Pan HC, Kunz M, Maisack M, Staubert R, Pietsch W, Truemper J, Efremov V, Sunyaev R (1994) Evidence for cyclotron line features in high energy spectra of A 0535+26 during the March/April 1989 outburst. A&A 291:L31–L34

    ADS  Google Scholar 

  • Kennea JA, Campana S (2006) Swift/XRT observation of IGR J08408-4503. Astron Telegr 818:1

    ADS  Google Scholar 

  • Kennea JA, Racusin JL, Burrows DN, Hunsberger S, Nousek JA, Gehrels N (2005) Swift/XRT detection and localization of IGR J01583+6713. Astron Telegram 673:1

    ADS  Google Scholar 

  • Kholopov PN, Samus’ NN, Kukarkina NP, Medvedeva GI, Perova NB (1981) 66th name-list of variable stars. Inform Bullet Var Stars 2042:1

    ADS  Google Scholar 

  • Kinugasa K, Torii K, Hashimoto Y, Tsunemi H, Hayashida K, Kitamoto S, Kamata Y, Dotani T, Nagase F, Sugizaki M, Ueda Y, Kawai N, Makishima K, Yamauchi S (1998) Discovery of the faint X-ray Pulsar AX J1820.5-1434 with ASCA. Astrophys J 495:435. doi:10.1086/305291

    Article  ADS  Google Scholar 

  • Klochkov D, Santangelo A, Staubert R, Ferrigno C (2008) Giant outburst of EXO 2030+375: pulse-phase resolved analysis of INTEGRAL data. A&A 491:833–840. doi:10.1051/0004-6361:200810673. arXiv:0809.4190

  • Klochkov D, Staubert R, Santangelo A, Rothschild RE, Ferrigno C (2011) Pulse-amplitude-resolved spectroscopy of bright accreting pulsars: indication of two accretion regimes. A&A 532:A126. doi:10.1051/0004-6361/201116800. arXiv:1107.2202

  • Klochkov D, Doroshenko V, Santangelo A, Staubert R, Ferrigno C, Kretschmar P, Caballero I, Wilms J, Kreykenbohm I, Pottschmidt K, Rothschild RE, Wilson-Hodge CA, Pühlhofer G (2012) Outburst of GX 304-1 monitored with INTEGRAL: positive correlation between the cyclotron line energy and flux. A&A 542:L28. doi:10.1051/0004-6361/201219385. arXiv:1205.5475

  • Koenigsberger G, Moreno E, Harrington DM (2012) Tidal effects on the radial velocity curve of HD 77581 (Vela X-1). A&A 539:A84. doi:10.1051/0004-6361/201118397. arXiv:1201.4619

  • Koh DT, Bildsten L, Chakrabarty D, Nelson RW, Prince TA, Vaughan BA, Finger MH, Wilson RB, Rubin BC (1997) Rapid spin-up episodes in the wind-fed accreting Pulsar GX 301-2. Astrophys J 479:933. doi:10.1086/303929

    Article  ADS  Google Scholar 

  • Kohmura T, Kitamoto S, Torii K (2001) Delayed iron lines in centaurus X-3. Astrophys J 562:943–949. doi:10.1086/323848

    Article  ADS  Google Scholar 

  • Kong AKH (2003) XMM-Newton observation of the X-ray point source population of the starburst galaxy IC 342. Mon Not RAS 346:265–272. doi:10.1046/j.1365-2966.2003.07086.x. arXiv:astro-ph/0308106

  • Kostka M, Leahy DA (2010) Evidence for an accretion stream in 4U1907+09. Mon Not RAS 407:1182–1187. doi:10.1111/j.1365-2966.2010.16968.x

    Article  ADS  Google Scholar 

  • Koyama K, Kawada M, Takeuchi Y, Tawara Y, Ushimaru N, Dotani T, Takizawa M (1990a) Discovery of a peculiar X-ray pulsar GS 1843+00. Astrophys J Lett 356:L47–L50. doi:10.1086/185747

    Article  ADS  Google Scholar 

  • Koyama K, Kunieda H, Takeuchi Y, Tawara Y (1990b) Discovery of a new X-ray pulsar GS 1843-02. Publ ASJ 42:L59–L64

    ADS  Google Scholar 

  • Kreykenbohm I, Wilms J, Coburn W, Kuster M, Rothschild RE, Heindl WA, Kretschmar P, Staubert R (2004) The variable cyclotron line in GX 301-2. A&A 427:975–986. doi:10.1051/0004-6361:20035836. arXiv:astro-ph/0409015

  • Kreykenbohm I, Mowlavi N, Produit N, Soldi S, Walter R, Dubath P, Lubiński P, Türler M, Coburn W, Santangelo A, Rothschild RE, Staubert R (2005) INTEGRAL observation of V 0332+53 in outburst. A&A 433:L45–L48. doi:10.1051/0004-6361:200500023. arXiv:astro-ph/0503028

  • Kreykenbohm I, Wilms J, Kretschmar P, Torrejón JM, Pottschmidt K, Hanke M, Santangelo A, Ferrigno C, Staubert R (2008) High variability in Vela X-1: giant flares and off states. Astrophys J Suppl 492:511–525. doi:10.1051/0004-6361:200809956. arXiv:0810.2981

  • Krimm HA, Barthelmy SD, Cummings J, Fenimore E, Gehrels N, Markwardt C, Palmer D, Parsons A, Sakamoto T, Sato G, Skinner G, Stamatikos M, Tueller J (2008) Swift/BAT detects increased activity from the accreting Pulsar GRO J1750-27. Astron Telegram 1376:1

    ADS  Google Scholar 

  • Krimm HA, Romano P, Barthelmy SD, Baumgartner W, Cummings J, Fenimore E, Gehrels N, Markwardt CB, Palmer D, Sakamoto T, Skinner G, Stamatikos M, Tueller J, Ukwatta T (2011) Swift/BAT reports increased activity from IGR J18483-0311. Astron Telegram 3780:1

    ADS  Google Scholar 

  • Krivonos R, Revnivtsev M, Lutovinov A, Sazonov S, Churazov E, Sunyaev R (2007) INTEGRAL/IBIS all-sky survey in hard X-rays. A&A 475:775–784. doi:10.1051/0004-6361:20077191. arXiv:astro-ph/0701836

  • Krivonos R, Tsygankov S, Sunyaev R, Melnikov S, Bikmaev I, Pavlinsky M, Burenin R (2009) Two new hard X-ray sources IGR J18151-1052 and IGR J17009+3559 discovered with INTEGRAL. Astron Telegram 2170:1

    ADS  Google Scholar 

  • Krivonos R, Tsygankov S, Lutovinov A, Turler M, Bozzo E (2010) The continued flaring activity of LS V+44 17/RX J0440.9+4431. Astron Telegram 2828:1

    ADS  Google Scholar 

  • Krivonos R, Tsygankov S, Lutovinov A, Revnivtsev M, Churazov E, Sunyaev R (2012) INTEGRAL/IBIS nine-year Galactic hard X-ray survey. A&A 545:A27. doi:10.1051/0004-6361/201219617. arXiv:1205.3941

  • Krivonos R, Tsygankov S, Lutovinov A, Revnivtsev M, Churazov E, Sunyaev R (2015) INTEGRAL 11-year hard X-ray survey above 100 keV. Mon Not RAS 448:3766–3774. doi:10.1093/mnras/stv150. arXiv:1412.1051

  • Krtička J, Kubát J, Skalický J (2012) X-ray photoionized bubble in the wind of vela X-1 pulsar supergiant companion. Astrophys J 757:162. doi:10.1088/0004-637X/757/2/162. arXiv:1208.1827

  • Krzeminski W (1974) The identification and UBV photometry of the visible component of the Centaurus X-3 binary system. Astrophys J Lett 192:L135–L138. doi:10.1086/181609

    Article  ADS  Google Scholar 

  • Kudritzki RP, Puls J (2000) Winds from hot stars. ARAstrophys J Suppl 38:613–666. doi:10.1146/annurev.astro.38.1.613

    Google Scholar 

  • Kuehnel M, Mueller S, Kreykenbohm I, Wilms J, Pottschmidt K, Fuerst F, Rothschild RE, Caballero I, Klochkov D, Staubert R, Suchy S, Kretschmar P, Ferrigno C, Torrejon JM, Martinez-Nunez S (2012) Improved orbital ephemeris of GRO J1008-57. Astron Telegram 4564:1

    ADS  Google Scholar 

  • Kuiper L, Keek S, Hermsen W, Jonker PG, Steeghs D (2006) Discovery of four new hard X-ray sources in the Circinus and Carina region by INTEGRAL. Astron Telegram 684:1

    ADS  Google Scholar 

  • Kuulkers E, Wijnands R, Belloni T, Mendez M, van der Klis M, van Paradijs J (1998) Absorption dips in the light curves of GRO J1655-40 and 4U 1630-47 during Outburst. Astrophys J 494:753

    Article  ADS  Google Scholar 

  • Kuulkers E, Shaw S, Paizis A, Gros A, Chenevez J, Sanchez-Fernandez C, Brandt S, Courvoisier TJL, Garau AD, Ebisawa K, Kretschmar P, Markwardt C, Mowlavi N, Oosterbroek T, Orr A, Oneca DR, Wijnands R (2006) New INTEGRAL source, IGR J17354-3255, and continuation of the INTEGRAL Galactic Bulge monitoring program. Astron Telegram 874:1

  • La Palombara N, Mereghetti S (2006) XMM-Newton observation of the Be/neutron star system RX J0146.9+6121: a soft X-ray excess in a low luminosity accreting pulsar. A&A 455:283–289. doi:10.1051/0004-6361:20065107. arXiv:astro-ph/0604193

  • La Palombara N, Sidoli L, Esposito P, Tiengo A, Mereghetti S (2009) XMM-Newton observation of the persistent Be/NS X-ray binary pulsar RX J1037.5-5647 in a low luminosity state. A&A 505:947–954. doi:10.1051/0004-6361/200912538. arXiv:0907.4239

  • La Parola V, Cusumano G, Romano P, Segreto A, Vercellone S, Chincarini G (2010a) Detection of an orbital period in the supergiant high-mass X-ray binary IGR J16465-4507 with Swift-BAT. Mon Not RAS 405:L66–L70. doi:10.1111/j.1745-3933.2010.00860.x. arXiv:1005.0684

  • La Parola V, Ducci L, Romano P, Sidoli L, Cusumano G, Vercellone S, Mangano V, Kennea JA, Krimm HA, Burrows DN, Gehrels N (2010b) The Swift SFXT monitoring campaign: the IGR J16479-4514 outburst in 2009. X-ray astronomy 2009; present status, multi-wavelength approach and future. Perspectives 1248:177–178. doi:10.1063/1.3475190. arXiv:1001.3588

  • La Parola V, D’Aì A, Cusumano G, Segreto A, Masetti N, Melandri A (2013) Timing and spectral study of the Be XRB IGR J11305-6256: swift discovers the orbital period and a soft X-ray excess. arXiv:1305:3916

  • Lamb RC, Markert TH, Hartman RC, Thompson DJ, Bignami GF (1980) Two X-ray pulsars: 2S 1145-619 and 1E 1145.1-6141. Astrophys J 239:651–654. doi:10.1086/158151

    Article  ADS  Google Scholar 

  • Lamers HJGLM, Cassinelli JP (1999) Introduction to stellar winds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lamers HJGLM, van den Heuvel EPJ, Petterson JA (1976) Stellar winds and accretion in massive X-ray binaries. Astrophys J Suppl 49:327–335

    Google Scholar 

  • Landi R, Masetti N, Capitanio F, Fiocchi M, Bird AJ (2009) A Swift/XRT follow-up observation of the INTEGRAL source IGR J14488-5942. Astron Telegr 2355:1

    Article  ADS  Google Scholar 

  • Leahy DA, Kostka M (2008) Stellar wind accretion in GX 301-2: evidence for a high-density stream. Mon Not RAS 384:747–754. doi:10.1111/j.1365-2966.2007.12754.x. arXiv:0709.0543

  • Lehmer BD, Alexander DM, Bauer FE, Brandt WN, Goulding AD, Jenkins LP, Ptak A, Roberts TP (2010) A chandra perspective on galaxy-wide X-ray binary emission and its correlation with star formation rate and stellar mass: new results from luminous infrared galaxies. Astrophys J 724:559–571. doi:10.1088/0004-637X/724/1/559. arXiv:1009.3943

  • Lépine S, Moffat AFJ (1999) Wind inhomogeneities in wolf-rayet stars. II Investigation of emission-line profile variations. Astrophys J 514:909–931. doi:10.1086/306958

    Article  ADS  Google Scholar 

  • Leutenegger MA, Cohen DH, Sundqvist JO, Owocki SP (2013) Constraints on porosity and mass loss in O-star winds from the modeling of X-ray emission line profile shapes. Astrophys J 770:80. doi:10.1088/0004-637X/770/1/80. arXiv:1305.5595

  • Levesque EM, Stringfellow GS, Ginsburg AG, Bally J, Keeney BA (2014) The peculiar balmer decrement of SN 2009ip: constraints on circumstellar geometry. Astrophys J 147:23. doi:10.1088/0004-6256/147/1/23

    ADS  Google Scholar 

  • Levine AM, Corbet R (2006) Detection of additional periodicities in RXTE ASM light curves. Astron Telegr 940:1

    ADS  Google Scholar 

  • Levine AM, Rappaport S, Remillard R, Savcheva A (2004) X1908+075: a pulsar orbiting in the stellar wind of a massive companion. Astrophys J 617:1284–1295. doi:10.1086/425567. arXiv:astro-ph/0404428

  • Levine AM, Bradt HV, Chakrabarty D, Corbet RHD, Harris RJ (2011) An extended and more sensitive search for periodicities in rossi X-ray timing explorer/all-sky monitor X-ray light curves. Astrophys J 196:6. doi:10.1088/0067-0049/196/1/6. arXiv:1009.0450

  • Leyder JC, Walter R, Lazos M, Masetti N, Produit N (2007) Hard X-ray flares in ASTROBJIGR J08408-4503/ASTROBJ unveil clumpy stellar winds. Astrophys J Suppl 465:L35–L38. doi:10.1051/0004-6361:20066317

    Google Scholar 

  • Li J, Torres DF, Zhang S, Papitto A, Chen Y, Wang JM (2012a) INTEGRAL and Swift observations of the be X-ray binary 4U 1036–56 (RX J1037.5-5647) and its possible relation with \(\gamma \)-ray transients. Astrophys J 761:49. doi:10.1088/0004-637X/761/1/49. arXiv:1210.1224

  • Li J, Zhang S, Torres DF, Papitto A, Chen YP, Wang JM (2012) INTEGRAL and Swift/XRT observations of IGR J18179-1621. Mon Not RAS 426:L16–L20. doi:10.1111/j.1745-3933.2012.01313.x

    Article  ADS  Google Scholar 

  • Lin CC, Yuan C, Shu FH (1969) On the spiral structure of disk galaxies. III. Comparison with observations. Astrophys J 155:721. doi:10.1086/149907

    Article  ADS  Google Scholar 

  • Liu QZ, van Paradijs J, van den Heuvel EPJ (2000) A catalogue of high-mass X-ray binaries. Astrophys J Suppls 147:25–49

    ADS  Google Scholar 

  • Liu QZ, van Paradijs J, van den Heuvel EPJ (2006) Catalogue of Galactic high-mass X-ray binaries (Liu+, 2006). VizieR Online Data Catalog 345(51):165

    Google Scholar 

  • Liu QZ, Chaty S, Yan JZ (2011) Be/X-ray binaries as the progenitors of the supergiant fast X-ray transients IGR J18483-0311 and IGR J11215-5952. Mon Not RAS 415:3349–3353. doi:10.1111/j.1365-2966.2011.18949.x

    Article  ADS  Google Scholar 

  • Lorenzo J, Negueruela I, Castro N, Norton AJ, Vilardell F, Herrero A (2014) Astrophysical parameters of the peculiar X-ray transient IGR J11215-5952. Astrophys J Suppl 562:A18. doi:10.1051/0004-6361/201321913. arXiv:1312.5597

  • Lucy LB, White RL (1980) X-ray emission from the winds of hot stars. Astrophys J 241:300–305. doi:10.1086/158342

    Article  ADS  Google Scholar 

  • Lupie OL, Nordsieck KH (1987) Visible and infrared continuum spectropolarimetric observations of ten OB supergiant and O emission-line stars. Astron J 93:214–230. doi:10.1086/114302

    Article  ADS  Google Scholar 

  • Lutovinov AA, Tsygankov SS (2009) Timing characteristics of the hard X-ray emission from bright X-ray pulsars based on INTEGRAL data. Astron Lett 35(7):433–456. doi:10.1134/S1063773709070019

    Article  ADS  Google Scholar 

  • Lutovinov AA, Grebenev SA, Syunyaev RA, Pavlinskii MN (1994) Timing of X-ray pulsars from data obtained with the ART-P telescope of the GRANAT space observatory in 1990–1992. Astron Lett 20:538–564

    ADS  Google Scholar 

  • Lutovinov AA, Grebenev SA, Sunyaev RA (2000) ART-P/GRANAT observations of the X-ray pulsar 4U0115+634 during the outburst in February 1990. Astron Lett 26:1–8. doi:10.1134/1.20363

    Article  ADS  Google Scholar 

  • Lutovinov A, Revnivtsev M, Molkov S (2003a) INTEGRAL detection and improved position of EXO 1722-363. Astron Telegr 178:1

    ADS  Google Scholar 

  • Lutovinov A, Walter R, Belanger G, Lund N, Grebenev S, Winkler C (2003b) IGR17597-2201 and AX1820.5-1434. Astron Telegr 1:155

    ADS  Google Scholar 

  • Lutovinov AA, Molkov SV, Revnivtsev MG (2003c) The first results of observations of the transient pulsar SAX J2103.5+4545 by the INTEGRAL observatory. Astron Lett 29:713–718. doi:10.1134/1.1624456. arXiv:astro-ph/0306289

  • Lutovinov A, Rodrigues J, Budtz-Jorgensen C, Grebenev S, Winkler C (2004) INTEGRAL discovered a new transient source IGRJ16465-4507. Astron Telegr 329:1

    ADS  Google Scholar 

  • Lutovinov A, Revnivtsev M, Gilfanov M, Shtykovskiy P, Molkov S, Sunyaev R (2005a) INTEGRAL insight into the inner parts of the Galaxy. High mass X-ray binaries. Astrophys J Suppl 444:821–829. doi:10.1051/0004-6361:20042392. arXiv:astro-ph/0411550

  • Lutovinov A, Revnivtsev M, Molkov S, Sunyaev R (2005b) INTEGRAL observations of five sources in the Galactic Center region. Astrophys J Suppl 430:997–1003. doi:10.1051/0004-6361:20041677. arXiv:astro-ph/0407342

  • Lutovinov A, Rodriguez J, Revnivtsev M, Shtykovskiy P (2005c) Discovery of X-ray pulsations from IGR J16320-4751 = AX J1631.9-4752. Astrophys J Suppl 433:L41–L44. doi:10.1051/0004-6361:200500092. arXiv:astro-ph/0411547

  • Lutovinov AA, Revnivtsev MG, Gilfanov MR, Sunyaev RA (2007) Population of HMXB in the Galaxy. In: ESA Special Publication, vol 622, p 241, arXiv:0801.3589

  • Lutovinov A, Tsygankov S, Chernyakova M (2012a) Strong outburst activity of the X-ray pulsar X Persei during 2001–2011. Mon Not RAS 423:1978–1984. doi:10.1111/j.1365-2966.2012.21036.x. arXiv:1204.0483

  • Lutovinov AA, Burenin RA, Revnivtsev MG, Bikmaev IF (2012b) Optical identification of six hard X-ray sources from the INTEGRAL and SWIFT all-sky surveys. Astron Lett 38:1–11. doi:10.1134/S1063773712010045

    Article  ADS  Google Scholar 

  • Lutovinov AA, Mironov AI, Burenin RA, Revnivtsev MG, Tsygankov SS, Pavlinsky MN, Korobtsev IV, Eselevich MV (2013a) Identification of four X-ray sources from the INTEGRAL and Swift catalogs. Astron Lett 39:513–522. doi:10.1134/S1063773713080069. arXiv:1307.2761

  • Lutovinov AA, Revnivtsev MG, Tsygankov SS, Krivonos RA (2013b) Population of persistent high-mass X-ray binaries in the Milky Way. Mon Not RAS 431:327–341. doi:10.1093/mnras/stt168. arXiv:1302.0728

  • Lutovinov AA, Tsygankov SS, Suleimanov VF, Mushtukov AA, Doroshenko V, Nagirner DI, Poutanen J (2015) Transient X-ray pulsar V 0332+53: pulse-phase-resolved spectroscopy and the reflection model. Mon Not RAS 448:2175–2176. doi:10.1093/mnras/stv125. arXiv:1502.03783

  • Lyne AG, Manchester RN, Taylor JH (1985) The galactic population of pulsars. Mon Not RAS 213:613–639

    Article  ADS  Google Scholar 

  • Makino F (1988) Supernova 1987A in the large magellanic cloud. IAU Circ 4530:2

    ADS  Google Scholar 

  • Makino F, Team GINGA (1988a) GS 1843–024. IAU Circ 4661:2

    ADS  Google Scholar 

  • Makino F, Team GINGA (1988b) Transient X-ray source. IAU Circ 4583:1

    ADS  Google Scholar 

  • Makishima K, Mihara T (1992) Magnetic fields of neutron stars. In: Tanaka Y, Koyama K (eds) Frontiers science series. Universal Academy Press, Tokyo, p 23

  • Makishima K, Kawai N, Koyama K, Shibazaki N, Nagase F, Nakagawa M (1984) Discovery of a 437.5-s X-ray pulsation from 4U 1907 + 09. Publ ASJ 36:679–689

    ADS  Google Scholar 

  • Makishima K, Koyama K, Hayakawa S, Nagase F (1987) Spectra and pulse period of the binary X-ray pulsar 4U 1538–52. Astrophys J 314:619–628. doi:10.1086/165091

    Article  ADS  Google Scholar 

  • Makishima K, Mihara T, Ishida M, Ohashi T, Sakao T, Tashiro M, Tsuru T, Kii T, Makino F, Murakami T, Nagase F, Tanaka Y, Kunieda H, Tawara Y, Kitamoto S, Miyamoto S, Yoshida A, Turner MJL (1990) Discovery of a prominent cyclotron absorption feature from the transient X-ray pulsar X0331 + 53. Astrophys J Lett 365:L59–L62. doi:10.1086/185888

    Article  ADS  Google Scholar 

  • Manousakis A, Walter R (2011) X-ray wind tomography of the highly absorbed HMXB IGR J17252–3616. Astrophys J Suppl 526:A62. doi:10.1051/0004-6361/201015707. arXiv:1008.5362

  • Manousakis A, Walter R (2012) Personal communication

  • Manousakis A, Walter R (2015a) Origin of the X-ray off-states in Vela X-1. Astrophys J Suppl 575:A58. doi:10.1051/0004-6361/201321414. arXiv:1412.5419

  • Manousakis A, Walter R (2015b) The stellar wind velocity field of HD 77581. Astron Astrophys. arXiv:1507.01016

  • Manousakis A, Walter R, Blondin JM (2012) Neutron star masses from hydrodynamical effects in obscured supergiant high mass X-ray binaries. Astron Astrophys 547(A20):7. doi:10.1051/0004-6361/201219717. arXiv:1210.2952

  • Markova N, Puls J, Scuderi S, Markov H (2005) Bright OB stars in the Galaxy. II. Wind variability in O supergiants as traced by Halpha. Astron Astrophys 440(3):1133–1151. doi:10.1051/0004-6361:20041774

    Article  ADS  Google Scholar 

  • Markwardt CB, Swank JH (2003) Detection of orbital period of EXO 1722–363. Astron Telegr 179:1

    ADS  Google Scholar 

  • Markwardt CB, Baumgartner WH, Skinner GK, Corbet RHD (2010) AX J1700.2-4220 is a 54 second X-ray pulsar. Astron Telegr, 2564:1

  • Marshall FE, Takeshima T, in’t Zand J (2000) XTE J1543–568. IAU Circ 7363:2

    ADS  Google Scholar 

  • Masetti N, Bassani L, Bazzano A, Bird AJ, Dean AJ, Malizia A, Norci L, Palazzi E, Schwope AD, Stephen JB, Ubertini P, Walter R (2006a) Unveiling the nature of INTEGRAL objects through optical spectroscopy. IV. A study of six new hard X-ray sources. Astrophys J Suppl 455:11–19. doi:10.1051/0004-6361:20065111. arXiv:astro-ph/0604482

  • Masetti N, Morelli L, Palazzi E, Galaz G, Bassani L, Bazzano A, Bird AJ, Dean AJ, Israel GL, Landi R, Malizia A, Minniti D, Schiavone F, Stephen JB, Ubertini P, Walter R (2006b) Unveiling the nature of INTEGRAL objects through optical spectroscopy. V. Identification and properties of 21 southern hard X-ray sources. Astrophys J Suppl 459:21–30. doi:10.1051/0004-6361:20066055. arXiv:astro-ph/0608394

  • Masetti N, Mason E, Morelli L, Cellone SA, McBride VA, Palazzi E, Bassani L, Bazzano A, Bird AJ, Charles PA, Dean AJ, Galaz G, Gehrels N, Landi R, Malizia A, Minniti D, Panessa F, Romero GE, Stephen JB, Ubertini P, Walter R (2008) Unveiling the nature of INTEGRAL objects through optical spectroscopy VI. A multi-observatory identification campaign. Astrophys J Suppl 482:113–132. doi:10.1051/0004-6361:20079332 arXiv:1412.5419. arXiv:0802.0988

  • Masetti N, Parisi P, Palazzi E, Jiménez-Bailón E, Morelli L, Chavushyan V, Mason E, McBride VA, Bassani L, Bazzano A, Bird AJ, Dean AJ, Galaz G, Gehrels N, Landi R, Malizia A, Minniti D, Schiavone F, Stephen JB, Ubertini P (2009) Unveiling the nature of INTEGRAL objects through optical spectroscopy. VII. Identification of 20 Galactic and extragalactic hard X-ray sources. Astrophys J Suppl 495:121–135. doi:10.1051/0004-6361:200811322. arXiv:0811.4085

  • Masetti N, Landi R, Sguera V, Capitanio F, Bassani L, Bazzano A, Bird AJ, Malizia A, Palazzi E (2010a) The peculiar high-mass X-ray binary 1ES 1210–646. Astrophys J Suppl 511:A48. doi:10.1051/0004-6361/200913404. arXiv:1001.0568

  • Masetti N, Parisi P, Palazzi E, Jiménez-Bailón E, Chavushyan V, Bassani L, Bazzano A, Bird AJ, Dean AJ, Charles PA, Galaz G, Landi R, Malizia A, Mason E, McBride VA, Minniti D, Morelli L, Schiavone F, Stephen JB, Ubertini P (2010b) Unveiling the nature of INTEGRAL objects through optical spectroscopy. VIII. Identification of 44 newly detected hard X-ray sources. Astrophys J Suppl 519:A96. doi:10.1051/0004-6361/201014852. arXiv:1006.4513

  • Masetti N, Jimenez-Bailon E, Chavushyan V, Parisi P, Bazzano A, Landi R, Bird AJ (2012a) Optical spectroscopy of X-ray source IGR J22534+6243. Astron Telegr 4248:1

    ADS  Google Scholar 

  • Masetti N, Parisi P, Jiménez-Bailón E, Palazzi E, Chavushyan V, Bassani L, Bazzano A, Bird AJ, Dean AJ, Galaz G, Landi R, Malizia A, Minniti D, Morelli L, Schiavone F, Stephen JB, Ubertini P (2012b) Unveiling the nature of INTEGRAL objects through optical spectroscopy. IX. Twenty two more identifications, and a glance into the far hard X-ray Universe. Astrophys J Suppl 538:A123. doi:10.1051/0004-6361/201118559. arXiv:1201.1906

  • Masetti N, Parisi P, Palazzi E, Jiménez-Bailón E, Chavushyan V, McBride V, Rojas AF, Steward L, Bassani L, Bazzano A, Bird AJ, Charles PA, Galaz G, Landi R, Malizia A, Mason E, Minniti D, Morelli L, Schiavone F, Stephen JB, Ubertini P (2013) Unveiling the nature of INTEGRAL objects through optical spectroscopy. X. A new multi-year, multi-observatory campaign. Astrophys J Suppl 556:A120. doi:10.1051/0004-6361/201322026. arXiv:1307.2898

  • Mason KO, Murdin PG, Parkes GE, Visvanathan N (1978) The optical counterpart of GX 304–1. Mon Not RAS 184:45P–48P

    Article  ADS  Google Scholar 

  • Mason AB, Clark JS, Norton AJ, Negueruela I, Roche P (2009) Spectral classification of the mass donors in the high-mass X-ray binaries EXO 1722-363 and OAO 1657-415. Astrophys J Suppl 505:281–286. doi:10.1051/0004-6361/200912480. arXiv:0907.3876

  • Mason AB, Norton AJ, Clark JS, Negueruela I, Roche P (2010) Preliminary determinations of the masses of the neutron star and mass donor in the high mass X-ray binary system EXO 1722-363. Astrophys J Suppl 509:A79. doi:10.1051/0004-6361/200913394. arXiv:0911.4887

  • Mason AB, Norton AJ, Clark JS, Negueruela I, Roche P (2011) The masses of the neutron and donor star in the high-mass X-ray binary IGR J18027-2016. Astrophys J Suppl 532:A124. doi:10.1051/0004-6361/201117392. arXiv:1106.5821

  • Mason AB, Clark JS, Norton AJ, Crowther PA, Tauris TM, Langer N, Negueruela I, Roche P (2012) The evolution and masses of the neutron star and donor star in the high mass X-ray binary OAO 1657-415. Mon Not RAS 422:199–206. doi:10.1111/j.1365-2966.2012.20596.x. arXiv:1102.3363

  • Massevitch AG, Tutukov AV, Iungelson LR (1976) Evolution of massive close binaries and formation of neutron stars and black holes. Ap&SS 40:115–133. doi:10.1007/BF00651192

    Article  ADS  Google Scholar 

  • Matt G, Guainazzi M (2003) The properties of the absorbing and line-emitting material in IGR J16318-4848. Mon Not RAS 341:L13–L17. doi:10.1046/j.1365-8711.2003.06658.x. arXiv:astro-ph/0303626

  • McBride VA, Wilms J, Coe MJ, Kreykenbohm I, Rothschild RE, Coburn W, Galache JL, Kretschmar P, Edge WRT, Staubert R (2006) Study of the cyclotron feature in \(<\)ASTROBJ\(>\)MXB 0656-072\(<\)/ASTROBJ\(>\). Astron Astrophys 451:267–272. doi:10.1051/0004-6361:20054239. arXiv:astro-ph/0602113

  • McClintock JE, Nugent JJ, Li FK, Rappaport SA (1977) Discovery of a 272 second periodic variation in the X-ray source GX 304-1. Astrophys J Lett 216:L15–L18. doi:10.1086/182499

    Article  ADS  Google Scholar 

  • Meszaros P, Nagel W (1985) X-ray pulsar models. II—Comptonized spectra and pulse shapes. Astrophys J 299:138–153. doi:10.1086/163687

    Article  ADS  Google Scholar 

  • Mihara T (1995) Observational study of X-ray spectra of binary pulsars with Ginga. PhD thesis, Department of Physics, University of Tokyo (M95)

  • Mihara T, Makishima K, Kamijo S, Ohashi T, Nagase F, Tanaka Y, Koyama K (1991) Discovery of a cyclotron resonance feature at 30 keV from the transient X-ray pulsar Cepheus X-4. Astrophys J Lett 379:L61. doi:10.1086/186154

    Article  ADS  Google Scholar 

  • Mihara T, Makishima K, Nagase F (1995) Cyclotron lines and continuum spectra of X-ray binary pulsars with GINGA. In: American Astronomical Society meeting abstracts, Bulletin of the American Astronomical Society, vol 27, p #104.03

  • Mihara T, Makishima K, Nagase F (1998) Cyclotron line variability. Adv Space Res 22:987–996. doi:10.1016/S0273-1177(98)00128-8

    Article  ADS  Google Scholar 

  • Mihara T, Makishima K, Nagase F (2004) Luminosity-related changes in the cyclotron resonance structure of the binary X-ray pulsar 4U 0115+63. Astrophys J 610:390–401. doi:10.1086/421543

    Article  ADS  Google Scholar 

  • Mihara T, Yamamoto T, Sugizaki M, Yamaoka K (2010) Discovery of the cyclotron line at 51 keV from GX 304-1. Astron Telegr 2796:1

    ADS  Google Scholar 

  • Mineo S, Gilfanov M, Sunyaev R (2012a) X-ray emission from star-forming galaxies—I. High-mass X-ray binaries. Mon Not RAS 419:2095–2115. doi:10.1111/j.1365-2966.2011.19862.x arXiv:1105.4610

    Article  ADS  Google Scholar 

  • Mineo S, Gilfanov M, Sunyaev R (2012b) X-ray emission from star-forming galaxies—II. Hot interstellar medium. Mon Not RAS 426:1870–1883. doi:10.1111/j.1365-2966.2012.21831.x. arXiv:1205.3715

  • Molkov S, Lutovinov A, Grebenev S (2003a) First results from TOO observations of the Aql X-1 field with INTEGRAL. Astrophys J Suppl 411:L357–L361. doi:10.1051/0004-6361:20031481 arXiv:astro-ph/0309630

    ADS  Google Scholar 

  • Molkov S, Mowlavi N, Goldwurm A, Strong A, Lund N, Paul J, Oosterbroek T (2003b) Igr J16479-4514. Astron Telegr 176:1

    ADS  Google Scholar 

  • Molkov SV, Cherepashchuk AM, Lutovinov AA, Revnivtsev MG, Postnov KA, Sunyaev RA (2004) A hard X-ray survey of the sagittarius arm tangent with the IBIS telescope of the INTEGRAL observatory: a catalog of sources. Astron Lett 30:534–539. doi:10.1134/1.1784495 arXiv:astro-ph/0402416

    Article  ADS  Google Scholar 

  • Moon DS, Kaplan DL, Reach WT, Harrison FA, Lee JE, Martin PG (2007) The rich mid-infrared environments of two highly obscured X-ray binaries: spitzer observations of IGR J16318-4848 and GX 301-2. Astrophys J Lett 671:L53–L56. doi:10.1086/524730. arXiv:0710.3351

  • Morel T, Grosdidier Y (2005) Near-infrared identification of the counterpart to X1908+075: a new OB-supergiant X-ray binary. Mon Not RAS 356:665–670. doi:10.1111/j.1365-2966.2004.08488.x arXiv:astro-ph/0410178

    Article  ADS  Google Scholar 

  • Morgan E, Remillard R, Swank J (2003) XTEJ0658-073 (=MX0656-072) is a pulsar. Astron Telegr 199:1

    ADS  Google Scholar 

  • Morii M, Kawai N, Sugimori K, Nakahira S, Yoshida A, Yamaoka K, Sugizaki M, Mihara T, Kohama M, Nakagawa YE, Yamamoto T, Saotome T, Negoro H, Nakajima M, Miyoshi S, Ozawa H, Ishiwata R, Tomida H, Matsuoka M, Kawasaki K, Ueno S, Suzuki M, Ishikawa M, Tsunemi H, Kimura M, Ueda Y, Isobe N, Eguchi S, Hiroi K, Daikyuji A, Uzawa A, Matsumura T, Yamazaki K (2010) MAXI/GSC detects a possible outburst of Be/X-ray binary LS V +44 17. Astron Telegr 2527:1

    ADS  Google Scholar 

  • Morris DC, Smith RK, Markwardt CB, Mushotzky RF, Tueller J, Kallman TR, Dhuga KS (2009) Suzaku observations of four heavily absorbed HMXBs. Astrophys J 699:892–901. doi:10.1088/0004-637X/699/1/892. arXiv:0808.3141

  • Motch C, Janot-Pacheco E (1987) The optical counterpart of the X-ray transient EXO 2030+375. Astrophys J Suppl 182:L55–L58

    ADS  Google Scholar 

  • Motch C, Haberl F, Dennerl K, Pakull M, Janot-Pacheco E (1997) New massive X-ray binary candidates from the ROSAT Galactic Plane Survey. I. Results from a cross-correlation with OB star catalogues. Astrophys J Suppl 323:853–875 arXiv:astro-ph/9611122

    ADS  Google Scholar 

  • Mowlavi N, Kreykenbohm I, Shaw SE, Pottschmidt K, Wilms J, Rodriguez J, Produit N, Soldi S, Larsson S, Dubath P (2006) INTEGRAL observation of the high-mass X-ray transient V 0332+53 during the 2005 outburst decline. Astrophys J Suppl 451:187–194. doi:10.1051/0004-6361:20054235 arXiv:astro-ph/0512414

    ADS  Google Scholar 

  • Müller S, Ferrigno C, Kühnel M, Schönherr G, Becker PA, Wolff MT, Hertel D, Schwarm FW, Grinberg V, Obst M, Caballero I, Pottschmidt K, Fürst F, Kreykenbohm I, Rothschild RE, Hemphill P, Núñez SM, Torrejón JM, Klochkov D, Staubert R, Wilms J (2013) No anticorrelation between cyclotron line energy and X-ray flux in 4U 0115+634. Astrophys J Suppl 551:A6. doi:10.1051/0004-6361/201220359 arXiv:1211.6298

    Google Scholar 

  • Mushtukov AA, Suleimanov VF, Tsygankov SS, Poutanen J (2015) The critical accretion luminosity for magnetized neutron stars. Mon Not RAS 447:1847–1856. doi:10.1093/mnras/stu2484 arXiv:1409.6457

    Article  ADS  Google Scholar 

  • Nagase F, Hayakawa S, Sato N, Masai K, Inoue H (1986) Circumstellar matter in the VELA X-1/HD 77581 system. Publ ASJ 38:547–569

    ADS  Google Scholar 

  • Nagase F, Corbet RHD, Day CSR, Inoue H, Takeshima T, Yoshida K, Mihara T (1992) GINGA observations of Centaurus X-3. Astrophys J 396:147–160. doi:10.1086/171705

    Article  ADS  Google Scholar 

  • Nagel W (1981) Radiative transfer in a strongly magnetized plasma—part two—effects of Comptonization. Astrophys J 251:288. doi:10.1086/159464

    Article  ADS  Google Scholar 

  • Nakajima H, Imanishi K, Takagi SI, Koyama K, Tsujimoto M (2003) X-ray observation on the Monoceros R2 star-forming region with the Chandra ACIS-I array. Publ ASJ 55:635–651. doi:10.1093/pasj/55.3.635 arXiv:astro-ph/0305323

    ADS  Google Scholar 

  • Nakajima M, Mihara T, Makishima K, Niko H (2006) A further study of the luminosity-dependent cyclotron resonance energies of the binary X-ray pulsar 4U 0115+63 with the Rossi X-ray timing explorer. Astrophys J 646:1125–1138. doi:10.1086/502638 arXiv:astro-ph/0601491

    Article  ADS  Google Scholar 

  • Nazé Y, Flores CA, Rauw G (2012) A detailed X-ray investigation of \(\zeta \) puppis. I. The dataset and some preliminary results. Astrophys J Suppl 538:A22. doi:10.1051/0004-6361/201117387. arXiv:1112.0862

  • Negueruela I (2010) Stellar wind accretion in high-mass X-ray binaries. In: Martí J, Luque-Escamilla PL, Combi JA (eds) High energy phenomena in massive stars. Astronomical Society of the Pacific conference series, vol 422, p 57. arXiv:0907.2883

  • Negueruela I, Okazaki AT (2001) The Be/X-ray transient 4U 0115+63/V635 Cassiopeiae. I. A consistent model. Astrophys J Suppl 369:108–116. doi:10.1051/0004-6361:20010146 arXiv:astro-ph/0011407

    ADS  Google Scholar 

  • Negueruela I, Schurch MPE (2007) A search for counterparts to massive X-ray binaries using photometric catalogues. Astrophys J Suppl 461:631–639. doi:10.1051/0004-6361:20066054 arXiv:astro-ph/0610006

    ADS  Google Scholar 

  • Negueruela I, Roche P, Fabregat J, Coe MJ (1999) The Be/X-ray transient V0332+53: evidence for a tilt between the orbit and the equatorial plane? Mon Not RAS 307:695–702. doi:10.1046/j.1365-8711.1999.02682.x arXiv:astro-ph/9903228

    Article  ADS  Google Scholar 

  • Negueruela I, Israel GL, Marco A, Norton AJ, Speziali R (2003) The Be/X-ray transient \(<\)ASTROBJ\(>\)KS 1947+300\(<\)/ASTROBJ\(>\). Astrophys J Suppl 397:739–745. doi:10.1051/0004-6361:20021529 arXiv:astro-ph/0210465

    ADS  Google Scholar 

  • Negueruela I, Smith DM, Chaty S (2005) Optical counterpart to IGR J16465-4507. Astron Telegr 429:1

    ADS  Google Scholar 

  • Negueruela I, Smith DM, Harrison TE, Torrejón JM (2006a) The optical counterpart to the peculiar X-ray transient XTE J1739-302. Astrophys J 638:982–986. doi:10.1086/498935 arXiv:astro-ph/0510675

    Article  ADS  Google Scholar 

  • Negueruela I, Smith DM, Reig P, Chaty S, Torrejón JM (2006b) Supergiant fast X-ray transients: a new class of high mass X-ray binaries unveiled by INTEGRAL. In: Wilson A (ed) The X-ray Universe 2005, ESA Special Publication, vol 604, pp 165–170

  • Negueruela I, Smith DM, Torrejon JM, Reig P (2007a) Supergiant fast X-ray transients: a common behaviour or a class of objects? arXiv:astro-ph/0704.3224 (e-prints)

  • Negueruela I, Torrejón JM, McBride V (2007b) The correct optical counterpart to IGR J11435-6109. Astron Telegr 1239:1

    ADS  Google Scholar 

  • Negueruela I, Casares J, Verrecchia F, Blay P, Israel GL, Covino S (2008a) XTE J1855-026 is a supergiant X-ray binary. Astron Telegr 1876:1

    ADS  Google Scholar 

  • Negueruela I, Torrejón JM, Reig P, Ribó M, Smith DM (2008b) Supergiant fast X-ray transients and other wind accretors. In: Bandyopadhyay RM, Wachter S, Gelino D, Gelino CR (eds) A population explosion: the nature and evolution of X-ray binaries in diverse environments. American Institute of Physics conference series, vol 1010, pp 252–256. doi:10.1063/1.2945052. arXiv:0801.3863

  • Negueruela I, Ribó M, Herrero A, Lorenzo J, Khangulyan D, Aharonian FA (2011) Astrophysical parameters of LS 2883 and implications for the PSR B1259-63 gamma-ray binary. Astrophys J Lett 732:L11. doi:10.1088/2041-8205/732/1/L11. arXiv:1103.4636

  • Nespoli E, Reig P (2011) Discovery of a quasi-periodic oscillation in the X-ray pulsar 1A 1118-615: correlated spectral and aperiodic variability. Astrophys J Suppl 526:A7. doi:10.1051/0004-6361/201015303 arXiv:1011.0564

    Google Scholar 

  • Nespoli E, Fabregat J, Mennickent RE (2008) Unveiling the nature of six HMXBs through IR spectroscopy. Astrophys J Suppl 486:911–917. doi:10.1051/0004-6361:200809645 arXiv:0806.0295

    ADS  Google Scholar 

  • Nespoli E, Fabregat J, Mennickent RE (2010a) K-band spectroscopy of IGR J16358-4726 and IGR J16393-4643: two new symbiotic X-ray binaries. Astrophys J Suppl 516:A94. doi:10.1051/0004-6361/200913410 arXiv:0910.0990

    Google Scholar 

  • Nespoli E, Fabregat J, Mennickent RE (2010b) Unveiling the nature of IGR J16493-4348 with IR spectroscopy. Astrophys J Suppl 516:A106. doi:10.1051/0004-6361/201014348 arXiv:1004.4101

    Google Scholar 

  • Nichelli E, Israel GL, Moretti A, Campana S, Göz D, Stella L (2011) Swift discovery of 328s coherent pulsations from the HMXB IGR J17200-3116. Astron Telegr 3205:1

    ADS  Google Scholar 

  • Nishimura O (2008) Formation mechanism for broad and shallow profiles of cyclotron lines in accreting X-ray pulsars. Astrophys J 672:1127–1136. doi:10.1086/523782

    Article  ADS  Google Scholar 

  • Nishimura O (2014) Variations of cyclotron line energy with luminosity in accreting X-ray pulsars. Astrophys J 781:30. doi:10.1088/0004-637X/781/1/30

    Article  ADS  Google Scholar 

  • Okazaki AT, Negueruela I (2001) A natural explanation for periodic X-ray outbursts in Be/X-ray binaries. Astrophys J Suppl 377:161–174. doi:10.1051/0004-6361:20011083 arXiv:astro-ph/0108037

    ADS  Google Scholar 

  • Orlandini M, Fiume DD, Frontera F, del Sordo S, Piraino S, Santangelo A, Segreto A, Oosterbroek T, Parmar AN (1998) BEPPOSAX observation of 4U 1626-67: discovery of an absorption cyclotron resonance feature. Astrophys J Lett 500:L163. doi:10.1086/311404. arXiv:astro-ph/9804241

  • Orlandini M, dal Fiume D, del Sordo S, Frontera F, Parmar AN, Santangelo A, Segreto A (1999) The broad-band spectrum of OAO1657-415 with it BeppoSAX: in search of cyclotron lines. Astrophys J Suppl 349:L9–L12 arXiv:astro-ph/9908094

    ADS  Google Scholar 

  • Oskinova LM, Feldmeier A, Hamann W-R (2006) High-resolution X-ray spectroscopy of bright O-type stars. Mon Not R Astron Soc 372(1):313–326

    Article  ADS  Google Scholar 

  • Oskinova LM, Todt H, Ignace R, Brown JC, Cassinelli JP, Hamann WR (2011) Early magnetic B-type stars: X-ray emission and wind properties. Mon Not RAS 416:1456–1474. doi:10.1111/j.1365-2966.2011.19143.x arXiv:1106.0508

    Article  ADS  Google Scholar 

  • Oskinova L, Hamann WR, Todt H, Sander A (2012) Macroclumping, magnetic fields, and X-rays in massive stars. In: Drissen L, Rubert C, St-Louis N, Moffat AFJ (eds) Proceedings of a scientific meeting in honor of Anthony F. J. Moffat, Astronomical Society of the Pacific conference series, vol 465, p 172

  • Owocki SP, Castor JI, Rybicki GB (1988) Time-dependent models of radiatively driven stellar winds. I—Nonlinear evolution of instabilities for a pure absorption model. Astrophys J 335:914–930. doi:10.1086/166977

    Article  ADS  Google Scholar 

  • Paizis A, Sidoli L (2014) Cumulative luminosity distributions of supergiant fast X-ray transients in hard X-rays. Mon Not RAS 439:3439–3452. doi:10.1093/mnras/stu191 arXiv:1401.6861

    Article  ADS  Google Scholar 

  • Pakull MW, Motch C, Negueruela I (2003) Be star counterpart of X-ray pulsar MX0656-072. Astron Telegr 202:1

    ADS  Google Scholar 

  • Parkes GE, Murdin PG, Mason KO (1980) The shell spectrum of the optical counterpart of GX 304-1 /4U 1258-61/. Mon Not RAS 190:537–542

    Article  ADS  Google Scholar 

  • Parmar AN, Stella L, Ferri P, White NE (1985) EXO 2030+375. IAU Circ 4066:1

    ADS  Google Scholar 

  • Pavan L, Bozzo E, Ferrigno C, Ricci C, Manousakis A, Walter R, Stella L (2011) AX J1910.7+0917 and three newly discovered INTEGRAL sources. Astrophys J Suppl 526:A122. doi:10.1051/0004-6361/201015561. arXiv:1012.1164

  • Pavlinsky M, Sunyaev R, Churazov E, Vikhlinin A, Sazonov S, Revnivtsev M, Arefiev V, Lapshov I, Akimov V, Levin V, Buntov M, Semena N, Grigorovich S, Babyshkin V, Predehl P, Hasinger G, Böhringer H, Schmitt J, Santangelo A, Schwope A, Wilms J (2009) Spectrum-RG astrophysical project. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7437. doi:10.1117/12.837361

  • Pearlman AB, Corbet RHD, Pottschmidt K, Skinner GK (2011) The orbital parameters and nature of the X-ray pulsar IGR J16393-4643 using pulse timing analysis. In: AAS/High Energy Astrophysics Division, vol 12, p #42.06

  • Pearlman AB, Corbet R, Pottschmidt K (2013) Superorbital modulation and orbital parameters of the eclipsing high-mass X-ray pulsar IGR J16493-4348. In: American Astronomical Society meeting abstracts, vol 221, p #142.38

  • Pellizza LJ, Chaty S, Negueruela I (2006) \(<\)ASTROBJ\(>\)IGR J17544-2619\(<\)/ASTROBJ\(>\): a new supergiant fast X-ray transient revealed by optical/infrared observations. Astron Astrophys 455:653–658. doi:10.1051/0004-6361:20054436. arXiv:astro-ph/0605559

  • Pence WD, Snowden SL, Mukai K, Kuntz KD (2001) Chandra X-ray sources in M101. Astrophys J 561:189–202. doi:10.1086/323240 arXiv:astro-ph/0107133

    Article  ADS  Google Scholar 

  • Petterson JA (1978) Twisted accretion disks. III—The time-dependent equations. Astrophys J 226:253–263. doi:10.1086/156604

    Article  ADS  Google Scholar 

  • Pfahl E, Rappaport S, Podsiadlowski P, Spruit H (2002) A new class of high-mass X-ray binaries: implications for core collapse and neutron star recoil. Astrophys J 574:364–376. doi:10.1086/340794 arXiv:astro-ph/0109521

    Article  ADS  Google Scholar 

  • Porter JM, Rivinius T (2003) Classical Be stars. PASP 115:1153–1170. doi:10.1086/378307

    Article  ADS  Google Scholar 

  • Postnov KA (2003) The universal luminosity function of binary X-ray sources in galaxies. Astron Lett 29:372–373. doi:10.1134/1.1579783 arXiv:astro-ph/0212568

    Article  ADS  Google Scholar 

  • Postnov KA, Mironov AI, Lutovinov AA, Shakura NI, Kochetkova AY, Tsygankov SS (2015) Spin-up/spin-down of neutron star in Be-X-ray binary system GX 304-1. Mon Not RAS 446:1013–1019. doi:10.1093/mnras/stu2155 arXiv:1410.3708

    Article  ADS  Google Scholar 

  • Pottschmidt K, Kreykenbohm I, Wilms J, Coburn W, Rothschild RE, Kretschmar P, McBride V, Suchy S, Staubert R (2005) RXTE discovery of multiple cyclotron lines during the 2004 December outburst of V0332+53. Astrophys J Lett 634:L97–L100. doi:10.1086/498689. arXiv:astro-ph/0511288

  • Poutanen J, Mushtukov AA, Suleimanov VF, Tsygankov SS, Nagirner DI, Doroshenko V, Lutovinov AA (2013) A reflection model for the cyclotron lines in the spectra of X-ray pulsars. Astrophys J 777:115. doi:10.1088/0004-637X/777/2/115 arXiv:1304.2633

    Article  ADS  Google Scholar 

  • Prat L, Rodriguez J, Hannikainen DC, Shaw SE (2008) Peering through the stellar wind of IGR J19140+0951 with simultaneous INTEGRAL/RXTE observations. Mon Not RAS 389:301–310. doi:10.1111/j.1365-2966.2008.13558.x arXiv:0806.1973

    Article  ADS  Google Scholar 

  • Priedhorsky WC, Terrell J (1983) Long-term X-ray observations of CEN X-3, GX 301-2 (4U 1223-62), GX 304-1 (4U 1258–61) and 4U 1145-61. Astrophys J 273:709–715. doi:10.1086/161406

    Article  ADS  Google Scholar 

  • Prinja RK, Howarth ID (1986) Narrow absorption components and variability in ultraviolet P Cygni profiles of early-type stars. Astrophys J Suppl Ser 61:357–418. doi:10.1086/191117

    Article  ADS  Google Scholar 

  • Produit N, Ballet J, Mowlavi N (2004) New gamma-ray transient, IGR J11305-6256 discovered by INTEGRAL. Astron Telegr 278:1

    ADS  Google Scholar 

  • Puls J, Vink JS, Najarro F (2008) Mass loss from hot massive stars. Astrophys J Supplr 16:209–325. doi:10.1007/s00159-008-0015-8 arXiv:0811.0487

    Google Scholar 

  • Quaintrell H, Norton AJ, Ash TDC, Roche P, Willems B, Bedding TR, Baldry IK, Fender RP (2003) The mass of the neutron star in Vela X-1 and tidally induced non-radial oscillations in GP Vel. Astrophys J Suppl 401:313–323. doi:10.1051/0004-6361:20030120 arXiv:astro-ph/0301243

    ADS  Google Scholar 

  • Rahoui F, Chaty S, Lagage P, Pantin E (2008) Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. II. The environment of the companion star. Astrophys J Suppl 484:801–813. doi:10.1051/0004-6361:20078774 arXiv:0802.1770

    ADS  Google Scholar 

  • Rampy RA, Smith DM, Negueruela I (2009) IGR J17544-2619 in depth with Suzaku: direct evidence for clumpy winds in a supergiant fast X-ray transient. Astrophys J 707:243–249. doi:10.1088/0004-637X/707/1/243 arXiv:0904.1189

    Article  ADS  Google Scholar 

  • Ranalli P, Comastri A, Setti G (2003) The 2–10 keV luminosity as a star formation rate indicator. Astrophys J Suppl 399:39–50. doi:10.1051/0004-6361:20021600 arXiv:astro-ph/0211304

    ADS  Google Scholar 

  • Rappaport S, Clark GW, Cominsky L, Li F, Joss PC (1978) Orbital elements of 4U 0115+63 and the nature of the hard X-ray transients. Astrophys J Lett 224:L1–L4. doi:10.1086/182745

    Article  ADS  Google Scholar 

  • Ray PS, Chakrabarty D (2002) The orbit of the high-mass X-ray binary pulsar 1E 1145.1-6141. Astrophys J 581:1293–1296. doi:10.1086/344300 arXiv:astro-ph/0208367

    Article  ADS  Google Scholar 

  • Reig P (2011) Be/X-ray binaries. Ap&SS 332:1–29. doi:10.1007/s10509-010-0575-8 arXiv:1101.5036

    Article  ADS  Google Scholar 

  • Reig P, Coe MJ (1999) X-ray spectral properties of the pulsar EXO 2030+375 during an outburst. Mon Not RAS 302:700–706. doi:10.1046/j.1365-8711.1999.02179.x

    Article  ADS  Google Scholar 

  • Reig P, Roche P (1999) Discovery of two new persistent Be/X-ray pulsar systems. Mon Not RAS 306:100–106. doi:10.1046/j.1365-8711.1999.02473.x arXiv:astro-ph/9902221

    Article  ADS  Google Scholar 

  • Reig P, Zezas A (2009) The spectral type of the optical counterpart to the high-mass X-ray binary IGR J06074+2205. Astron Telegr 2085:1

    ADS  Google Scholar 

  • Reig P, Zezas A (2014a) Disc-loss episode in the Be shell optical counterpart to the high-mass X-ray binary IGR J21343+4738. Astrophys J Suppl 561:A137. doi:10.1051/0004-6361/201321408 arXiv:1311.3093

    Google Scholar 

  • Reig P, Zezas A (2014b) Discovery of X-ray pulsations in the Be/X-ray binary IGR J21343+4738. Mon Not RAS 442:472–478. doi:10.1093/mnras/stu898 arXiv:1405.1154

    Article  ADS  Google Scholar 

  • Reig P, Chakrabarty D, Coe MJ, Fabregat J, Negueruela I, Prince TA, Roche P, Steele IA (1996) Astrophysical parameters of the massive X-ray binary 2S 0114+650. Astrophys J Suppl 311:879–888

    ADS  Google Scholar 

  • Reig P, Negueruela I, Fabregat J, Chato R, Coe MJ (2005a) Long-term optical/IR variability of the Be/X-ray binary \(<\)ASTROBJ\(>\)LS V +44 17\(<\)ASTROBJ\(>\) \(<\)ASTROBJ\(>\)RX J0440.9+4431\(<\)ASTROBJ\(>\). Astron Astrophys 440:1079–1086. doi:10.1051/0004-6361:20053124. arXiv:astro-ph/0506230

  • Reig P, Negueruela I, Papamastorakis G, Manousakis A, Kougentakis T (2005b) Identification of the optical counterparts of high-mass X-ray binaries through optical photometry and spectroscopy. Astrophys J Suppl 440:637–646. doi:10.1051/0004-6361:20052684 arXiv:astro-ph/0505319

    ADS  Google Scholar 

  • Reig P, Torrejón JM, Negueruela I, Blay P, Ribó M, Wilms J (2009) Discovery of slow X-ray pulsations in the high-mass X-ray binary 4U 2206+54. Astrophys J Suppl 494:1073–1082. doi:10.1051/0004-6361:200810950 arXiv:0812.2365

    ADS  Google Scholar 

  • Reig P, Zezas A, Gkouvelis L (2010) The optical counterpart to IGR J06074+2205: a Be/X-ray binary showing disc loss and V/R variability. Astrophys J Suppl 522:A107. doi:10.1051/0004-6361/201014788 arXiv:1006.4935

    Google Scholar 

  • Remillard R, Levine A, Takeshima T, Corbet RHD, Marshall FE, Swank JH, Chakrabarty D (1998) XTE J1858+034. IAU Circ 6826:2

    ADS  Google Scholar 

  • Revnivtsev MG (2003) RXTE Observations of the Strongly Absorbed Sources IGR J16318–4848 and IGR J16358–4726. Astronomy Letters 29:644–648. doi:10.1134/1.1615332 arXiv:astro-ph/0304353

    Article  ADS  Google Scholar 

  • Revnivtsev MG, Sazonov SY, Gilfanov MR, Sunyaev RA (2003) IGR J16318-4848: an X-ray source in a dense envelope? Astron Lett 29:587–593. doi:10.1134/1.1607496 arXiv:astro-ph/0303274

    Article  ADS  Google Scholar 

  • Revnivtsev MG, Sunyaev RA, Varshalovich DA, Zheleznyakov VV, Cherepashchuk AM, Lutovinov AA, Churazov EM, Grebenev SA, Gilfanov MR (2004) A hard X-ray survey of the galactic-center region with the IBIS telescope of the INTEGRAL observatory: a catalog of sources. Astron Lett 30:382–389. doi:10.1134/1.1764884 arXiv:astro-ph/0402027

    Article  ADS  Google Scholar 

  • Revnivtsev M, Molkov S, Grebenev S (2005) New outburst of accreting X-ray pulsar IGR J11435-6109. Astron Telegr 531:1

    ADS  Google Scholar 

  • Reynolds AP, Bell SA, Hilditch RW (1992) Optical spectroscopy of the massive X-ray binary QV Nor (4U 1538-52). Mon Not RAS 256:631–640

    Article  ADS  Google Scholar 

  • Rivers E, Markowitz A, Pottschmidt K, Roth S, Barragán L, Fürst F, Suchy S, Kreykenbohm I, Wilms J, Rothschild R (2010) A comprehensive spectral analysis of the X-ray pulsar 4U 1907+09 from two observations with the Suzaku X-ray observatory. Astrophys J 709:179–190. doi:10.1088/0004-637X/709/1/179 arXiv:0912.3023

    Article  ADS  Google Scholar 

  • Robba NR, Cusumano G, Orlandini M, dal Fiume D, Frontera F (1992) EXOSAT observations of the X-ray binary pulsar 4U 1538-52. Astrophys J 401:685–694. doi:10.1086/172096

    Article  ADS  Google Scholar 

  • Robba NR, Burderi L, Di Salvo T, Iaria R, Cusumano G (2001) The BeppoSAX 0.1-100 keV spectrum of the X-ray pulsar 4U 1538-52. Astrophys J 562:950–956. doi:10.1086/323841 arXiv:astro-ph/0109031

    Article  ADS  Google Scholar 

  • Roberts MSE, Michelson PF, Leahy DA, Hall TA, Finley JP, Cominsky LR, Srinivasan R (2001) Phase-dependent spectral variability in 4U 1907+09. Astrophys J 555:967–977. doi:10.1086/321487

    Article  ADS  Google Scholar 

  • Roche P, Coe MJ, Fabregat J, McHardy IM, Norton AJ, Percy JR, Reglero V, Reynolds A, Unger SJ (1993) Recent phase changes in X Persei—optical, infrared and X-ray behaviour. Astrophys J Suppl 270:122–138

    ADS  Google Scholar 

  • Rodes-Roca JJ, Torrejón JM, Kreykenbohm I, Martínez Núñez S, Camero-Arranz A, Bernabéu G (2009) The first cyclotron harmonic of 4U 1538-52. Astrophys J Suppl 508:395–400. doi:10.1051/0004-6361/200912815 arXiv:0910.4464

    ADS  Google Scholar 

  • Rodes-Roca JJ, Page KL, Torrejón JM, Osborne JP, Bernabéu G (2011) Detecting emission lines with XMM-Newton in 4U 1538-52. Astrophys J Suppl 526:A64. doi:10.1051/0004-6361/201014324 arXiv:1012.0769

    Google Scholar 

  • Rodriguez J, Tomsick JA, Foschini L, Walter R, Goldwurm A, Corbel S, Kaaret P (2003) An XMM-Newton observation of IGR J16320-4751 = AX J1631.9-4752. Astrophys J Suppl 407:L41–L45. doi:10.1051/0004-6361:20031093 arXiv:astro-ph/0304139

    ADS  Google Scholar 

  • Rodriguez J, Garau AD, Grebenev S, Parmard A, Roques J, Schonfelder V, Ubertini P, Walter R, Westergaard N (2004) INTEGRAL discovery of a possible new source IGR J18410-0535. Astron Telegr 340:1

    ADS  Google Scholar 

  • Rodriguez J, Bodaghee A, Kaaret P, Tomsick JA, Kuulkers E, Malaguti G, Petrucci PO, Cabanac C, Chernyakova M, Corbel S, Deluit S, Di Cocco G, Ebisawa K, Goldwurm A, Henri G, Lebrun F, Paizis A, Walter R, Foschini L (2006) INTEGRAL and XMM-Newton observations of the X-ray pulsar IGR J16320-4751/AX J1631.9-4752. Mon Not RAS 366:274–282. doi:10.1111/j.1365-2966.2005.09855.x arXiv:astro-ph/0511429

    Article  ADS  Google Scholar 

  • Rodriguez J, Tuerler M, Chaty S, Tomsick JA (2009) Swift archival observations of the field around the new INTEGRAL source IGR J19294+1816. Astron Telegr 1998:1

    ADS  Google Scholar 

  • Rodriguez J, Tomsick JA, Bodaghee A (2010) Swift follow-up observations of 13 INTEGRAL sources. Astrophys J Suppl 517:A14. doi:10.1051/0004-6361/200913967 arXiv:1003.3741

    Google Scholar 

  • Romano P, Mereghetti S, Sidoli L, Evans PA (2008a) Swift/XRT localisation of XTE J1855-026. Astron Telegr 1875:1

    ADS  Google Scholar 

  • Romano P, Sidoli L, Mangano V, Kennea JA, Burrows DN, Krimm H, Gehrels N, Vercellone S, Cusumano G, Paizis A (2008b) Swift catches a new outburst from the supergiant fast X-ray transient IGRJ16479-4514. Astron Telegr 1435:1

    ADS  Google Scholar 

  • Romano P, Sidoli L, Mangano V, Vercellone S, Kennea JA, Cusumano G, Krimm HA, Burrows DN, Gehrels N (2008c) Monitoring supergiant fast X-ray transients with Swift. II. Rise to the outburst in IGR J16479-4514. Astrophys J Lett 680:L137–L140. doi:10.1086/590082. arXiv:0805.2089

  • Romano P, Barthelmy S, Margutti R, Guidorzi C, Sidoli L, Kennea JA, La Parola V, Burrows DN, Esposito P, Evans PA, Krimm HA, Gehrels N, Vercellone S (2009a) Swift observations of an outburst of the SFXT AX J1845.0-0433/IGR J18450-0435. Astron Telegr 2102:1

  • Romano P, Sidoli L, Cusumano G, La Parola V, Vercellone S, Pagani C, Ducci L, Mangano V, Cummings J, Krimm HA, Guidorzi C, Kennea JA, Hoversten EA, Burrows DN, Gehrels N (2009b) Monitoring supergiant fast X-ray transients with Swift: results from the first year. Mon Not RAS 399:2021–2032. doi:10.1111/j.1365-2966.2009.15356.x. arXiv:0907.1289

  • Romano P, Sidoli L, Cusumano G, Vercellone S, Mangano V, Krimm HA (2009c) Disentangling the system geometry of the supergiant fast X-ray transient IGR J11215-5952 with Swift. Astrophys J 696:2068–2074. doi:10.1088/0004-637X/696/2/2068 arXiv:0902.1985

    Article  ADS  Google Scholar 

  • Romano P, Cusumano G, Baumgartner WH, Krimm HA, Sakamoto T, de Pasquale M, Barthelmy SD, Burrows DN, Chester MM, Kennea JA, Evans PA, Esposito P, Gehrels N, Palmer DM, La Parola V, Vercellone S (2010a) Analysis of Swift data of the June 5 outburst of the SFXT IGR J18410-0535/AX1841.0-0536. Astron Telegr 2662:1

  • Romano P, Sidoli L, Ducci L, Cusumano G, La Parola V, Pagani C, Page KL, Kennea JA, Burrows DN, Gehrels N, Sguera V, Bazzano A (2010b) Swift/XRT monitoring of the supergiant fast X-ray transient IGR J18483-0311 for an entire orbital period. Mon Not RAS 401:1564–1569. doi:10.1111/j.1365-2966.2009.15789.x arXiv:0909.5109

    Article  ADS  Google Scholar 

  • Romano P, Sidoli L, Ducci L, Cusumano G, La Parola V, Pagani C, Page KL, Kennea JA, Burrows DN, Gehrels N, Sguera V, Bazzano A (2010c) Swift/XRT monitoring of the supergiant fast X-ray transient IGR J18483-0311 for an entire orbital period. Mon Not RAS 401:1564–1569. doi:10.1111/j.1365-2966.2009.15789.x arXiv:0909.5109

    Article  ADS  Google Scholar 

  • Romano P, La Parola V, Vercellone S, Cusumano G, Sidoli L, Krimm HA, Pagani C, Esposito P, Hoversten EA, Kennea JA, Page KL, Burrows DN, Gehrels N (2011a) Two years of monitoring supergiant fast X-ray transients with Swift. Mon Not RAS 410:1825–1836. doi:10.1111/j.1365-2966.2010.17564.x arXiv:1009.1146

    ADS  Google Scholar 

  • Romano P, Mangano V, Cusumano G, Esposito P, Evans PA, Kennea JA, Vercellone S, La Parola V, Krimm HA, Burrows DN, Gehrels N (2011b) Confirmation of the supergiant fast X-ray transient nature of AX J1841.0-0536 from Swift outburst observations. Mon Not RAS 412:L30–L34. doi:10.1111/j.1745-3933.2010.00999.x arXiv:1012.0028

    Article  ADS  Google Scholar 

  • Romano P, Mangano V, Esposito P, Kennea JA, Evans PA, Vercellone S, Burrows DN, Chester MM, Cusumano G, Farinelli R, Krimm H, La Parola V (2011c) Swift observations of a flare in IGR J16418-4532. Astron Telegr 3174:1

    ADS  Google Scholar 

  • Romano P, Barthelmy SD, Chester MM, Oates SR, Burrows DN, Esposito P, Evans PA, Kennea JA, Krimm HA, Mangano V, Vercellone S, Gehrels N (2012a) Swift observes a new outburst from the supergiant fast X-ray transient AX J1845.0-0433. Astron Telegr 4095:1

  • Romano P, Barthelmy SD, Kennea JA, Esposito P, Evans PA, Mangano V, Palmer DM, Burrows DN, Chester MM, Krimm H, Ukwatta TN, Vercellone S, Gehrels N (2012b) Swift observes a new outburst from the supergiant fast X-ray transient AX J1841.0-0536. Astron Telegr 4176:1

  • Romano P, Barthelmy SD, Kennea JA, Esposito P, Evans PA, Mangano V, Palmer DM, Sakamoto T, Burrows DN, Chester MM, Krimm H, Vercellone S, Gehrels N (2012c) Swift detection of IGR16418-4532. Astron Telegr 4148:1

  • Romano P, Mangano V, Ducci L, Esposito P, Evans PA, Vercellone S, Kennea JA, Burrows DN, Gehrels N (2012d) Swift/X-ray telescope monitoring of the candidate supergiant fast X-ray transient IGR J16418-4532. Mon Not RAS 419:2695–2702. doi:10.1111/j.1365-2966.2011.19916.x. arXiv:1109.6165

  • Romano P, Mangano V, Ducci L, Esposito P, Vercellone S, Bocchino F, Burrows DN, Kennea JA, Krimm HA, Gehrels N, Farinelli R, Ceccobello C (2013) The Swift supergiant fast X-ray transients project: a review, new results and future perspectives. Adv Space Res 52:1593–1601. doi:10.1016/j.asr.2013.07.034 arXiv:1307.6969

    Article  ADS  Google Scholar 

  • Romano P, Ducci L, Mangano V, Esposito P, Bozzo E, Vercellone S (2014a) Soft X-ray characterisation of the long-term properties of supergiant fast X-ray transients. Astrophys J Suppl 568:A55. doi:10.1051/0004-6361/201423867 arXiv:1406.6068

    Google Scholar 

  • Romano P, Krimm HA, Palmer DM, Ducci L, Esposito P, Vercellone S, Evans PA, Guidorzi C, Mangano V, Kennea JA, Barthelmy SD, Burrows DN, Gehrels N (2014b) The 100-month Swift catalogue of supergiant fast X-ray transients. I. BAT on-board and transient monitor flares. Astrophys J Suppl 562:A2. doi:10.1051/0004-6361/201322516. arXiv:1312.4955

  • Romano P, Bozzo E, Mangano V, Esposito P, Israel G, Tiengo A, Campana S, Ducci L, Ferrigno C, Kennea JA (2015) Giant outburst from the supergiant fast X-ray transient IGR J17544-2619: accretion from a transient disc? Astrophys J Suppl 576:L4. doi:10.1051/0004-6361/201525749 arXiv:1502.04717

    ADS  Google Scholar 

  • Romanova MM, Toropina OD, Toropin YM, Lovelace RVE (2003) Magnetohydrodynamic simulations of accretion onto a star in the ‘Propeller’ regime. Astrophys J 588:400–407. doi:10.1086/373990 arXiv:astro-ph/0209548

    Article  ADS  Google Scholar 

  • Rosenberg FD, Eyles CJ, Skinner GK, Willmore AP (1975) Observations of a transient X-ray source with a period of 104 S. Nature 256:628–630. doi:10.1038/256628a0

    Article  ADS  Google Scholar 

  • Rubin BC, Finger MH, Scott DM, Wilson RB (1997) Observation of a long-term spin-up trend in 4U 1538-52. Astrophys J 488:413. doi:10.1086/304679

    Article  ADS  Google Scholar 

  • Runacres MC, Owocki SP (2005) A pseudo-planar, periodic-box formalism for modelling the outer evolution of structure in spherically expanding stellar winds. Astrophys J Suppl 429:323–333. doi:10.1051/0004-6361:20041281 arXiv:astro-ph/0405315

    ADS  Google Scholar 

  • Şahiner Ş, Inam SÇ, Baykal A (2012) A comprehensive study of RXTE and INTEGRAL observations of the X-ray pulsar 4U 1907+09. Mon Not RAS 421:2079–2087. doi:10.1111/j.1365-2966.2012.20455.x arXiv:1106.5957

    Article  ADS  Google Scholar 

  • Sakano M, Koyama K, Murakami H, Maeda Y, Yamauchi S (2002) ASCA X-ray source catalog in the galactic center region. Astrophys J Suppl 138:19–34. doi:10.1086/324020 arXiv:astro-ph/0108376

    Article  ADS  Google Scholar 

  • Sako M, Kahn SM, Paerels F, Liedahl DA, Watanabe S, Nagase F, Takahashi T (2003) Structure and dynamics of stellar winds in high-mass X-ray binaries. In: Invited review at the high-resolution X-ray spectroscopy workshop with XMM-Newton and Chandra, MSSL, Oct 24–25, 2002. arXiv:astro-ph/0309503 (e-prints)

  • Sana H, de Mink SE, de Koter A, Langer N, Evans CJ, Gieles M, Gosset E, Izzard RG, Le Bouquin JB, Schneider FRN (2012) Binary interaction dominates the evolution of massive stars. Science 337:444. doi:10.1126/science.1223344. arXiv:1207.6397

  • Santangelo A, del Sordo S, Segreto A, dal Fiume D, Orlandini M, Piraino S (1998) BeppoSAX detection of a cyclotron feature in the spectrum of Cen X-3. Astrophys J Suppl 340:L55–L59

    Google Scholar 

  • Santangelo A, Segreto A, Giarrusso S, dal Fiume D, Orlandini M, Parmar AN, Oosterbroek T, Bulik T, Mihara T, Campana S, Israel GL, Stella L (1999) A BEPPOSAX study of the pulsating transient X0115+63: the first X-ray spectrum with four cyclotron harmonic features. Astrophys J Lett 523:L85–L88. doi:10.1086/312249

    Article  ADS  Google Scholar 

  • Sato N, Nagase F, Kawai N, Kelley RL, Rappaport S, White NE (1986) Orbital elements of the binary X-ray pulsar GX 301-2. Astrophys J 304:241–248. doi:10.1086/164157

    Article  ADS  Google Scholar 

  • Schönherr G, Wilms J, Kretschmar P, Kreykenbohm I, Santangelo A, Rothschild RE, Coburn W, Staubert R (2007) A model for cyclotron resonance scattering features. Astron Astrophys 472:353–365. doi:10.1051/0004-6361:20077218 arXiv:0707.2105

    Article  ADS  Google Scholar 

  • Scott DM, Finger MH, Wilson RB, Koh DT, Prince TA, Vaughan BA, Chakrabarty D (1997) Discovery and orbital determination of the transient X-ray pulsar GRO J1750-27. Astrophys J 488:831. doi:10.1086/304740

    Article  ADS  Google Scholar 

  • Segreto A, La Parola V, Cusumano G, D’Aì A, Masetti N, Campana S (2013) The 54-day orbital period of AX J1820.5-1434 unveiled by Swift. Astron Astrophys 558:A99. doi:10.1051/0004-6361/201321892. arXiv:1305.3614

  • Seward FD, Page CG, Turner MJL, Pounds KA (1976) X-ray sources in the Aquila–Serpens–Scutum region. Mon Not RAS 175:39P–46P

    Article  ADS  Google Scholar 

  • Sguera V, Barlow EJ, Bird AJ, Clark DJ, Dean AJ, Hill AB, Moran L, Shaw SE, Willis DR, Bazzano A, Ubertini P, Malizia A (2005) INTEGRAL observations of recurrent fast X-ray transient sources. Astron Astrophys 444:221–231. doi:10.1051/0004-6361:20053103 arXiv:astro-ph/0509018

    Article  ADS  Google Scholar 

  • Sguera V, Bazzano A, Bird AJ, Dean AJ, Ubertini P, Barlow EJ, Bassani L, Clark DJ, Hill AB, Malizia A, Molina M, Stephen JB (2006) Unveiling supergiant fast X-ray transient sources with INTEGRAL. Astrophys J 646:452–463. doi:10.1086/504827. arXiv:astro-ph/0603756

  • Sguera V, Hill AB, Bird AJ, Dean AJ, Bazzano A, Ubertini P, Masetti N, Landi R, Malizia A, Clark DJ, Molina M (2007) IGR J18483-0311: an accreting X-ray pulsar observed by INTEGRAL. Astron Astrophys 467:249–257. doi:10.1051/0004-6361:20066762. arXiv:astro-ph/0702477

  • Sguera V, Bassani L, Landi R, Bazzano A, Bird AJ, Dean AJ, Malizia A, Masetti N, Ubertini P (2008) INTEGRAL and Swift/XRT observations of the SFXT IGR J16479-4514: from quiescence to fast flaring activity. Astron Astrophys 487:619–623. doi:10.1051/0004-6361:20079195. arXiv:0805.0496

  • Sguera V, Romero GE, Bazzano A, Masetti N, Bird AJ, Bassani L (2009) Dissecting the region of 3EG J1837-0423 and HESS J1841-055 with INTEGRAL. Astrophys J 697:1194–1205. doi:10.1088/0004-637X/697/2/1194. arXiv:0903.1763

  • Sguera V, Ducci L, Sidoli L, Bazzano A, Bassani L (2010) XMM-Newton and INTEGRAL study of the SFXT IGR J18483-0311 in quiescence: hint of a cyclotron emission feature? Mon Not RAS 402:L49–L53. doi:10.1111/j.1745-3933.2009.00798.x. arXiv:0912.1730

  • Sguera V, Drave SP, Bird AJ, Bazzano A, Landi R, Ubertini P (2011) IGR J17354-3255 as a candidate intermediate supergiant fast X-ray transient possibly associated with the transient MeV AGL J1734-3310. Mon Not RAS 417:573–579. doi:10.1111/j.1365-2966.2011.19298.x. arXiv:1106.4209

  • Sguera V, Drave SP, Sidoli L, Masetti N, Landi R, Bird AJ, Bazzano A (2013) X-ray, optical, and infrared investigation of the candidate supergiant fast X-ray transient IGR J18462-0223. Astron Astrophys 556:A27. doi:10.1051/0004-6361/201220785. arXiv:1305.1538

  • Shakura N, Postnov K, Kochetkova A, Hjalmarsdotter L (2012) Theory of quasi-spherical accretion in X-ray pulsars. Mon Not RAS 420:216–236. doi:10.1111/j.1365-2966.2011.20026.x. arXiv:1110.3701

  • Shakura N, Postnov K, Hjalmarsdotter L (2013) On the nature of ‘off’ states in slowly rotating low-luminosity X-ray pulsars. Mon Not RAS 428:670–677. doi:10.1093/mnras/sts062. arXiv:1209.4962

  • Shakura N, Postnov K, Sidoli L, Paizis A (2014) Bright flares in supergiant fast X-ray transients. Mon Not RAS 442:2325–2330. doi:10.1093/mnras/stu1027. arXiv:1405.5707

  • Shaw SE, Hill AB, Kuulkers E, Brandt S, Chenevez J, Kretschmar P (2009) The accretion powered spin-up of GRO J1750-27. Mon Not RAS 393:419–428. doi:10.1111/j.1365-2966.2008.14212.x

    Article  ADS  Google Scholar 

  • Shrader CR, Sutaria FK, Singh KP, Macomb DJ (1999) High-energy spectral and temporal characteristics of GRO J1008-57. Astrophys J 512:920–928. doi:10.1086/306785

    Article  ADS  Google Scholar 

  • Shtykovskiy P, Gilfanov M (2005a) High mass X-ray binaries in the LMC: Dependence on the stellar population age and the ‘propeller’ effect. Astron Astrophys 431:597–614. doi:10.1051/0004-6361:20041074. arXiv:astro-ph/0404300

  • Shtykovskiy P, Gilfanov M (2005b) High-mass X-ray binaries in the small magellanic cloud: the luminosity function. Mon Not RAS 362:879–890. doi:10.1111/j.1365-2966.2005.09320.x. arXiv:astro-ph/0503477

  • Shtykovskiy PE, Gilfanov MR (2007) High-mass X-ray binaries and the spiral structure of the host galaxy. Astron Lett 33:299–308. doi:10.1134/S1063773707050039. arXiv:0710.3504

  • Sidoli L (2010) New galactic high mass X-ray binaries discovered with INTEGRAL. arXiv:1010:2070 (e-prints)

  • Sidoli L, Mereghetti S, Larsson S, Chernyakova M, Kreykenbohm I, Kretschmar P, Paizis A, Santangelo A, Ferrigno C, Falanga M (2005a) A large spin-up rate measured with INTEGRAL in the high mass X-ray binary pulsar SAX J2103.5+4545. Astron Astrophys 440:1033–1039. doi:10.1051/0004-6361:20052961. arXiv:astro-ph/0505532

  • Sidoli L, Vercellone S, Mereghetti S, Tavani M (2005b) The soft X-ray counterpart of the newly discovered INTEGRAL source IGR J16195-4945. Astron Astrophys 429:L47–L50. doi:10.1051/0004-6361:200400114. arXiv:astro-ph/0411610

  • Sidoli L, Romano P, Mereghetti S, Paizis A, Vercellone S, Mangano V, Götz D (2007) An alternative hypothesis for the outburst mechanism in supergiant fast X-ray transients: the case of IGR J11215-5952. Astron Astrophys 476:1307–1315. doi:10.1051/0004-6361:20078137. arXiv:0710.1175

  • Sidoli L, Romano P, Mangano V, Pellizzoni A, Kennea JA, Cusumano G, Vercellone S, Paizis A, Burrows DN, Gehrels N (2008) Monitoring supergiant fast X-ray transients with Swift. I. Behavior outside outbursts. Astrophys J 687:1230–1235. doi:10.1086/590077. arXiv:0805.1808

  • Sidoli L, Romano P, Ducci L, Paizis A, Cusumano G, Mangano V, Krimm HA, Vercellone S, Burrows DN, Kennea JA, Gehrels N (2009a) Supergiant fast X-ray transients in outburst: new Swift observations of XTE J1739-302, IGR J17544-2619 and IGR J08408-4503. Mon Not RAS 397:1528–1538. doi:10.1111/j.1365-2966.2009.15049.x. arXiv:0905.2815

  • Sidoli L, Romano P, Esposito P, Parola VL, Kennea JA, Krimm HA, Chester MM, Bazzano A, Burrows DN, Gehrels N (2009b) The first broad-band X-ray study of the supergiant fast X-ray transient SAX J1818.6-1703 in outburst. Mon Not RAS 400:258–262. doi:10.1111/j.1365-2966.2009.15445.x. arXiv:0907.4041

  • Sidoli L, Romano P, Mangano V, Cusumano G, Vercellone S, Kennea JA, Paizis A, Krimm HA, Burrows DN, Gehrels N (2009c) Monitoring supergiant fast X-ray transients with Swift. III. Outbursts of the prototypical supergiant fast X-ray transients IGR J17544-2619 and XTE J1739-302. Astrophys J 690:120–127. doi:10.1088/0004-637X/690/1/120. arXiv:0808.3085

  • Sidoli L, Esposito P, Ducci L (2010) The longest observation of a low-intensity state from a supergiant fast X-ray transient: Suzaku observes IGRJ08408-4503. Mon Not RAS 409(2):611–618. doi:10.1111/j.1365-2966.2010.17320.x. arXiv:1007.1091

  • Sidoli L, Mereghetti S, Sguera V, Pizzolato F (2012) The XMM-Newton view of supergiant fast X-ray transients: the case of IGR J16418-4532. Mon Not RAS 420:554–561. doi:10.1111/j.1365-2966.2011.20063.x. arXiv:1110.5218

  • Sidoli L, Esposito P, Sguera V, Bodaghee A, Tomsick JA, Pottschmidt K, Rodriguez J, Romano P, Wilms J (2013) A Suzaku X-ray observation of one orbit of the supergiant fast X-ray transient IGR J16479-4514. Mon Not RAS 429(3):2763–2771. doi:10.1093/mnras/sts559. arXiv:1212.0723

  • Smith DM (2004) Circumstantial evidence for a blue supergiant companion of IGR J16465-4507. Astron Telegr 338:1

    ADS  Google Scholar 

  • Smith DA, Takeshima T (1998) XTE J1946+274 transient 15.8-s pulsar (= 3A 1942+274 ?). Astron Telegr 36:1

  • Smith D, Remillard R, Swank J, Takeshima T, Smith E (1998) XTE J0421+560. IAU Circ 6855. http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?bibcode=1998IAUC.6855....1S&db_key=AST

  • Smith DM, Heindl WA, Markwardt CB, Swank JH, Negueruela I, Harrison TE, Huss L (2006) XTE J1739-302 as a supergiant fast X-ray transient. Astrophys J 638:974–981. doi:10.1086/498936. arXiv:astro-ph/0510658

  • Soffitta P, Tomsick JA, Harmon BA, Costa E, Ford EC, Tavani M, Zhang SN, Kaaret P (1998) Identification of the periodic hard X-ray transient GRO J1849-03 with the X-ray pulsar GS -1843-02 = X1845-024: a new Be/X-ray binary. Astrophys J Lett 494:L203. doi:10.1086/311189. arXiv:astro-ph/9712282

  • Soria R, Wu K (2003) Properties of discrete X-ray sources in the starburst spiral galaxy M 83. Astron Astrophys 410:53–74. doi:10.1051/0004-6361:20031074. arXiv:astro-ph/0307217

  • Staubert R, Shakura NI, Postnov K, Wilms J, Rothschild RE, Coburn W, Rodina L, Klochkov D (2007) Discovery of a flux-related change of the cyclotron line energy in Hercules X-1. Astron Astrophys 465:L25–L28. doi:10.1051/0004-6361:20077098. arXiv:astro-ph/0702490

  • Staubert R, Pottschmidt K, Doroshenko V, Wilms J, Suchy S, Rothschild R, Santangelo A (2011) Finding a 24-day orbital period for the X-ray binary 1A 1118-616. Astron Astrophys 527:A7. doi:10.1051/0004-6361/201015737. arXiv:1012.2459

  • Steele IA, Negueruela I, Coe MJ, Roche P (1998) The distances to the X-ray binaries LSI +61 deg 303 and A0535+262. Mon Not RAS 297:L5. doi:10.1046/j.1365-8711.1998.01593.x. arXiv:astro-ph/9803113

  • Steiner C, Eckert D, Mowlavi N, Decourchelle A, Vink J (2005) IGR J01583+6713, a new hard X-ray transient discovered by INTEGRAL. Astron Telegr 672:1

    ADS  Google Scholar 

  • Stella L, White NE, Davelaar J, Parmar AN, Blissett RJ, van der Klis M (1985) The discovery of 4.4 second X-ray pulsations from the rapidly variable X-ray transient V0332 + 53. Astrophys J Lett 288:L45–L49. doi:10.1086/184419

    Article  ADS  Google Scholar 

  • Stevens IR, Kallman TR (1990) X-ray illuminated stellar winds—ionization effects in the radiative driving of stellar winds in massive X-ray binary systems. Astrophys J 365:321–331. doi:10.1086/169486

    Article  ADS  Google Scholar 

  • Stevens JB, Reig P, Coe MJ, Buckley DAH, Fabregat J, Steele IA (1997) Multiwavelength observations of the Be/X-ray binary 4U1145-619. Mon Not RAS 288:988–994. arXiv:astro-ph/9706110

  • Stollberg MT, Finger MH, Wilson RB, Harmon BA, Rubin BC, Zhang NS, Fishman GJ (1993) GRO J1008-57. IAU Circ 5836:1

    ADS  Google Scholar 

  • Stollberg MT, Finger MH, Wilson RB, Scott DM, Crary DJ, Paciesas WS (1999) BATSE observations and orbit determination of the BE/X-ray transient EXO 2030+375. Astrophys J 512:313–321. doi:10.1086/306733

    Article  ADS  Google Scholar 

  • Suchy S, Pottschmidt K, Wilms J, Kreykenbohm I, Schönherr G, Kretschmar P, McBride V, Caballero I, Rothschild RE, Grinberg V (2008) Pulse phase-resolved analysis of the high-mass X-ray binary Centaurus X-3 over two binary orbits. Astrophys J 675:1487–1498. doi:10.1086/527042. arXiv:0711.2752

  • Suchy S, Fürst F, Pottschmidt K, Caballero I, Kreykenbohm I, Wilms J, Markowitz A, Rothschild RE (2012) Broadband spectroscopy using two Suzaku observations of the HMXB GX 301-2. Astrophys J 745:124. doi:10.1088/0004-637X/745/2/124. arXiv:1111.2088

  • Sugizaki M, Mitsuda K, Kaneda H, Matsuzaki K, Yamauchi S, Koyama K (2001) Faint X-ray sources resolved in the ASCA galactic plane survey and their contribution to the galactic ridge X-ray emission. Astrophys J Suppl 134:77–102. doi:10.1086/320358. arXiv:astro-ph/0101093

  • Sundqvist JO, Owocki SP (2013) Clumping in the inner winds of hot, massive stars from hydrodynamical line-driven instability simulations. Mon Not RAS 428(2):1837–1844. doi:10.1093/mnras/sts165

  • Sundqvist JO, Owocki SP, Cohen DH, Leutenegger MA, Townsend RHD (2012) A generalized porosity formalism for isotropic and anisotropic effective opacity and its effects on X-ray line attenuation in clumped O star winds. Mon Not RAS 420:1553–1561. doi:10.1111/j.1365-2966.2011.20141.x. arXiv:1111.1762

  • Sunyaev R, Lutovinov A, Molkov S, Deluit S (2003a) Possible new source IGR J17391-3021 or an outburst from XTE J1739-302. Astron Telegr 181:1

  • Sunyaev RA, Grebenev SA, Lutovinov AA, Rodriguez J, Mereghetti S, Gotz D, Courvoisier T (2003b) New source IGR J17544-2619 discovered with INTEGRAL. Astron Telegr 190:1

    ADS  Google Scholar 

  • Šurlan B, Hamann WR, Aret A, Kubát J, Oskinova LM, Torres AF (2013) Macroclumping as solution of the discrepancy between H\(\alpha \) and P v mass loss diagnostics for O-type stars. Astron Astrophys 559:A130. doi:10.1051/0004-6361/201322390. arXiv:1310.0449

  • Swank J, Morgan E (2000) KS 1947+300 = GRO J1948+32. IAU Circ 7531:4

    ADS  Google Scholar 

  • Swank JH, Markwardt CB (2004) IGR J11435-6109: faded, but variable—possibly \(\sim \)66 s pulsations. Astron Telegr 359:1

    ADS  Google Scholar 

  • Swank J, Remillard R, Smith E (2004) Transient pulsar V0332+53 in outburst. Astron Telegr 349:1

    ADS  Google Scholar 

  • Swank JH, Smith DM, Markwardt CB (2007) RXTE PCA pointed observations of IGR J11215-5952. Astron Telegr 999:1

    ADS  Google Scholar 

  • Swartz DA, Ghosh KK, McCollough ML, Pannuti TG, Tennant AF, Wu K (2003) Chandra X-ray observations of the spiral galaxy M81. Astrophys J Suppl 144:213–242. doi:10.1086/345084. arXiv:astro-ph/0206160

  • Taam RE, Sandquist EL (2000) Common envelope evolution of massive binary stars. Annu Rev Astron Astrophys 38:113–141. doi:10.1146/annurev.astro.38.1.113

    Article  ADS  Google Scholar 

  • Taam RE, Bodenheimer P, Ostriker JP (1978) Double core evolution. I—A 16 solar mass star with a 1 solar mass neutron-star companion. Astrophys J 222:269–280. doi:10.1086/156142

    Article  ADS  Google Scholar 

  • Takeshima T, Corbet RHD, Marshall FE, Swank J, Chakrabarty D (1998) XTE J1858+034. IAU Circ 6826:1

    Google Scholar 

  • Takeuchi Y, Koyama K, Warwick RS (1990) Further GINGA observations of the new X-ray pulsar X1722-36. Publ ASJ 42:287–293

    ADS  Google Scholar 

  • Tamura K, Tsunemi H, Kitamoto S, Hayashida K, Nagase F (1992) The X-ray outburst from X0115 + 634 in 1990 February. Astrophys J 389:676–684. doi:10.1086/171240

    Article  ADS  Google Scholar 

  • Tapia M, Costero R, Echevarria J, Roth M (1991) Near-infrared and Stromgren photometry of the open clusters NGC 663, NGC 1502 and NGC 1893. Mon Not RAS 253:649–661

    Article  ADS  Google Scholar 

  • Tawara Y, Yamauchi S, Awaki H, Kii T, Koyama K, Nagase F (1989) Discovery of 413.9-second X-ray pulsation from X1722-36. Publ ASJ 41:473–481

    ADS  Google Scholar 

  • Telting JH, Waters LBFM, Roche P, Boogert ACA, Clark JS, de Martino D, Persi P (1998) The equatorial disc of the Be star X Persei. Mon Not RAS 296:785–799. doi:10.1046/j.1365-8711.1998.01433.x

    Article  ADS  Google Scholar 

  • Tendulkar SP, Fürst F, Pottschmidt K, Bachetti M, Bhalerao VB, Boggs SE, Christensen FE, Craig WW, Hailey CA, Harrison FA, Stern D, Tomsick JA, Walton DJ, Zhang W (2014) NuSTAR discovery of a cyclotron line in the Be/X-ray binary RX J0520.5-6932 during outburst. arXiv:1409.5035 (e-prints)

  • Terrell J, Belian RD, Conner JP, Evans WD, Priedhorsky WC (1982) X-ray transients, 1969–1976 (the movie). In: Bulletin of the American Astronomical Society, vol 14, p 619

  • Thompson TWJ, Tomsick JA, Rothschild RE, in’t Zand JJM, Walter R (2006) Orbital parameters for the X-ray pulsar IGR J16393-4643. Astrophys J 649:373–381. doi:10.1086/506251. arXiv:astro-ph/0605657

  • Tjemkes SA, van Paradijs J, Zuiderwijk EJ (1986) Optical light curves of massive X-ray binaries. Astron Astrophys 154:77–91

    ADS  Google Scholar 

  • Tomsick JA (2009) A Chandra X-ray localization, spectrum, and IR identification for IGR J17354-3255. Astron Telegr 2022:344–353

  • Tomsick JA, Lingenfelter R, Walter R, Rodriguez J, Goldwurm A, Corbel S, Kaaret P (2003) Igr J16320-4751. IAU Circ 8076:1

    ADS  Google Scholar 

  • Tomsick JA, Lingenfelter R, Corbel S, Goldwurm A, Kaaret P (2004) Two new INTEGRAL sources: IGR J15479-4529 and IGR J16418-4532. Astron Telegr 224:1

    ADS  Google Scholar 

  • Tomsick JA, Chaty S, Rodriguez J, Foschini L, Walter R, Kaaret P (2006a) Identifications of Four INTEGRAL sources in the galactic plane via Chandra localizations. Astrophys J 647:1309–1322. doi:10.1086/505595. arXiv:astro-ph/0603810

  • Tomsick JA, Chaty S, Rodriguez J, Walter R, Kaaret P (2006b) IGR J06074+2205 is a Be X-ray binary. Astron Telegr 959:1

    ADS  Google Scholar 

  • Tomsick JA, Chaty S, Rodriguez J, Walter R, Kaaret P (2007) Chandra position and optical/IR identification for IGR J11435-6109. Astron Telegr 1231:1

    ADS  Google Scholar 

  • Tomsick JA, Chaty S, Rodriguez J, Walter R, Kaaret P (2008) Chandra localizations and spectra of INTEGRAL sources in the galactic plane. Astrophys J 685:1143–1156. doi:10.1086/591040. arXiv:0807.2278

  • Tomsick JA, Chaty S, Rodriguez J, Walter R, Kaaret P (2009a) Chandra localizations and spectra of integral sources in the galactic plane: the cycle 9 sample. Astrophys J 701:811–823. doi:10.1088/0004-637X/701/1/811. arXiv:0906.2577

  • Tomsick JA, Chaty S, Rodriguez J, Walter R, Kaaret P, Tovmassian G (2009b) An XMM-Newton spectral and timing study of IGR J16207-5129: an obscured and non-pulsating HMXB. Astrophys J 694:344–353. doi:10.1088/0004-637X/694/1/344. arXiv:0812.2975

  • Tomsick JA, Heinke C, Halpern J, Kaaret P, Chaty S, Rodriguez J, Bodaghee A (2011) Confirmation of IGR J01363+6610 as a Be X-ray binary with very low quiescent X-ray luminosity. Astrophys J 728:86. doi:10.1088/0004-637X/728/2/86. arXiv:1012.2817

  • Torii K, Kinugasa K, Katayama K, Kohmura T, Tsunemi H, Sakano M, Nishiuchi M, Koyama K, Yamauchi S (1998) Discovery of a 220 second X-ray pulsar, AX J1749.2-2725. Astrophys J 508:854–858. doi:10.1086/306455

    Article  ADS  Google Scholar 

  • Toropin YM, Toropina OD, Savelyev VV, Romanova MM, Chechetkin VM, Lovelace RVE (1999) Spherical Bondi accretion onto a magnetic dipole. Astrophys J 517:906–918. doi:10.1086/307229. arXiv:astro-ph/9811272

  • Torrejón JM, Kreykenbohm I, Orr A, Titarchuk L, Negueruela I (2004) Evidence for a neutron star in the non-pulsating massive X-ray binary 4U2206+54. Astron Astrophys 423:301–309. doi:10.1051/0004-6361:20035743. arXiv:astro-ph/0405182

  • Torrejón JM, Negueruela I, Smith DM, Harrison TE (2010) Near-infrared survey of high mass X-ray binary candidates. Astron Astrophys 510:A61. doi:10.1051/0004-6361/200912619. arXiv:0910.5603

  • Trudolyubov SP, Borozdin KN, Priedhorsky WC (2001) Bright X-ray transients in the andromeda galaxy observed with Chandra and XMM-Newton. Astrophys J Lett 563:L119–L122. doi:10.1086/338592. arXiv:astro-ph/0108477

  • Truemper J, Pietsch W, Reppin C, Voges W, Staubert R, Kendziorra E (1978) Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1. Astrophys J Lett 219:L105–L110. doi:10.1086/182617

    Article  ADS  Google Scholar 

  • Tsunemi H, Kitamoto S, Tamura K (1996) Long-term behavior of Centaurus X-3 observed with the all sky monitor on board GINGA. Astrophys J 456:316. doi:10.1086/176652

    Article  ADS  Google Scholar 

  • Tsygankov SS, Lutovinov AA (2005a) Long-term INTEGRAL and RXTE observations of the X-ray pulsar LMC X-4. Astron Lett 31:380–387. doi:10.1134/1.1940110. arXiv:astro-ph/0504601

  • Tsygankov SS, Lutovinov AA (2005b) Observations of the transient X-ray pulsar KS 1947+300 by the INTEGRAL and RXTE observatories. Astron Lett 31:88–97. doi:10.1134/1.1862348. arXiv:astro-ph/0501080

  • Tsygankov SS, Lutovinov AA, Churazov EM, Sunyaev RA (2006) V0332+53 in the outburst of 2004–2005: luminosity dependence of the cyclotron line and pulse profile. Mon Not RAS 371:19–28. doi:10.1111/j.1365-2966.2006.10610.x. arXiv:astro-ph/0511237

  • Tsygankov SS, Lutovinov AA, Churazov EM, Sunyaev RA (2007) 4U 0115+63 from RXTE and INTEGRAL data: pulse profile and cyclotron line energy. Astron Lett 33:368–384. doi:10.1134/S1063773707060023. arXiv:0704.2874

  • Tsygankov SS, Lutovinov AA, Serber AV (2010) Completing the puzzle of the 2004–2005 outburst in V0332+53: the brightening phase included. Mon Not RAS 401:1628–1635. doi:10.1111/j.1365-2966.2009.15791.x. arXiv:0909.5379

  • Tsygankov S, Lutovinov A, Krivonos R (2011) New outburst from the X-ray pulsar RX J0440.9+4431 and discovery of a possible \(\sim \) 155 days orbital period. Astron Telegr 3137:1

  • Tsygankov SS, Krivonos RA, Lutovinov AA (2012) Broad-band observations of the Be/X-ray binary pulsar RX J0440.9+4431: discovery of a cyclotron absorption line. Mon Not RAS 421:2407–2413. doi:10.1111/j.1365-2966.2012.20475.x. arXiv:1201.0616

  • Tueller J, Barthelmy S, Burrows D, Falcone A, Gehrels N, Grupe D, Kennea J, Markwardt CB, Mushotzky RF, Skinner GK (2005) SWIFT/BAT detections of hard X-ray sources II. Astron Telegr 669:1

    ADS  Google Scholar 

  • Tuerler M, Chenevez J, Bozzo E, Ferrigno C, Tramacere A, Caballero I, Rodriguez J, Cadolle-Bel M, Sanchez-Fernandez C, Del Santo M, Fiocchi M, Tarana A, den Hartog PR, Kreykenbohm I, Kuehnel M, Paizis A, Puehlhofer G, Watanabe K, Weidenspointner G, Zhang S (2012) A new hard X-ray transient discovered by INTEGRAL: IGR J18179-1621. Astron Telegr 3947:1

    ADS  Google Scholar 

  • Turler M, Rodriguez J, Ferrigno C (2009) INTEGRAL discovers the new hard X-ray source IGR J19294+1816. Astron Telegr 1997:1

    ADS  Google Scholar 

  • Tutukov A, Yungelson L (1973) Evolution of massive close binaries. Nauchnye Informatsii 27:70

    ADS  Google Scholar 

  • Tutukov A, Yungelson L (1993) Formation of neutron stars in binary systems. Astron Rep 37:411–431

    ADS  Google Scholar 

  • van den Heuvel EPJ, De Loore C (1973) The nature of X-ray binaries III. Evolution of massive close binaries with one collapsed component - with a possible application to Cygnus X-3. Astron Astrophys 25:387–395

    ADS  Google Scholar 

  • van den Heuvel EPJ, Heise J (1972) Centaurus X-3, possible reactivation of an old neutron star by mass exchange in a close binary. Nat Phys Sci 239:67–69. doi:10.1038/physci239067a0

    Article  ADS  Google Scholar 

  • van der Meer A, Kaper L, di Salvo T, Méndez M, van der Klis M, Barr P, Trams NR (2005) XMM-Newton X-ray spectroscopy of the high-mass X-ray binary 4U 1700–37 at low flux. Astron Astrophys 432:999–1012. doi:10.1051/0004-6361:20041288. arXiv:astro-ph/0412021

  • van der Meer A, Kaper L, van Kerkwijk MH, Heemskerk MHM, van den Heuvel EPJ (2007) Determination of the mass of the neutron star in \(<\)ASTROBJ\(>\)SMC X-1\(<\)ASTROBJ\(>\), \(<\)ASTROBJ\(>\)LMC X-4\(<\)ASTROBJ\(>\), and \(<\)ASTROBJ\(>\)Cen X-3\(<\)ASTROBJ\(>\) with VLT/UVES. Astron Astrophys 473:523–538. doi:10.1051/0004-6361:20066025. arXiv:0707.2802

  • Vercellone S, D’Ammando F, Striani E, Tavani M, Sabatini S, Bulgarelli A, Gianotti F, Trifoglio M, Feroci M, Lazzarotto F, Del Monte E, Pittori C, Verrecchia F, Pellizzoni A, Pilia M, Chen A, Giuliani A, Piano G, Pucella G, Vittorini V, Costa E, Donnarumma I, Pacciani L, Soffitta P, Evangelista Y, Lapshov I, Rapisarda M, Argan A, Trois A, de Paris G, Marisaldi M, Di Cocco G, Labanti C, Fuschino F, Galli M, Caraveo P, Mereghetti S, Perotti F, Fiorini M, Zambra A, Barbiellini G, Longo F, Moretti E, Vallazza E, Picozza P, Morselli A, Prest M, Lipari P, Zanello D, Cattaneo P, Rappoldi Santolamazza P, Colafrancesco S, Giommi P, Salotti L, Romano P, Burrows DN, Gehrels N (2009) Swift detection of an X-ray transient possibly associated with IGR J17354-3255. Astron Telegr 2019:1

  • Verrecchia F, Israel GL, Negueruela I, Covino S, Polcaro VF, Clark JS, Steele IA, Gualandi R, Speziali R, Stella L (2002a) The identification of the optical/IR counterpart of the 15.8-s transient X-ray pulsar XTE J1946+274. Astron Astrophys 393:983–989. doi:10.1051/0004-6361:20021087. arXiv:astro-ph/0207587

  • Verrecchia F, Negueruela I, Covino S, Israel G (2002b) The optical counterpart to XTE J1855-026. Astron Telegr 102:1

    ADS  Google Scholar 

  • Vink JS, de Koter A, Lamers HJGLM (2000) New theoretical mass-loss rates of O and B stars. Astron Astrophys 362:295–309. arXiv:astro-ph/0008183

  • Voss R, Ajello M (2010) Swift-BAT survey of galactic sources: catalog and properties of the populations. Astrophys J 721:1843–1852. doi:10.1088/0004-637X/721/2/1843. arXiv:1009.1397

  • Walter R (2007) New INTEGRAL sources and TeV emission. Astrophys Space Sci 309:5–9. doi:10.1007/s10509-007-9477-9

    Article  ADS  Google Scholar 

  • Walter R, Zurita Heras J (2007) Probing clumpy stellar winds with a neutron star. Astron Astrophys 476:335–340. doi:10.1051/0004-6361:20078353. arXiv:0710.2542

  • Walter R, Rodriguez J, Foschini L, de Plaa J, Corbel S, Courvoisier TJL, den Hartog PR, Lebrun F, Parmar AN, Tomsick JA, Ubertini P (2003) INTEGRAL discovery of a bright highly obscured galactic X-ray binary source IGR J16318-4848. Astron Astrophys 411:L427–L432. doi:10.1051/0004-6361:20031369. arXiv:astro-ph/0309536

  • Walter R, Bodaghee A, Barlow EJ, Bird AJ, Dean A, Hill AB, Shaw S, Bazzano A, Ubertini P, Bassani L, Malizia A, Stephen JB, Belanger G, Lebrun F, Terrier R (2004) 14 New unidentified INTEGRAL sources. Astron Telegr 229:1

    ADS  Google Scholar 

  • Walter R, Zurita Heras J, Bassani L, Bazzano A, Bodaghee A, Dean A, Dubath P, Parmar AN, Renaud M, Ubertini P (2006) XMM-Newton and INTEGRAL observations of new absorbed supergiant high-mass X-ray binaries. Astron Astrophys 453:133–143. doi:10.1051/0004-6361:20053719

    Article  ADS  Google Scholar 

  • Wang W (2009) Evidence for a magnetic neutron star in high-mass X-ray binary 4U 2206+54 with INTEGRAL/IBIS observations. Mon Not RAS 398:1428–1434. doi:10.1111/j.1365-2966.2009.15200.x. arXiv:0906.2591

  • Wang W (2011) Long-term hard X-ray monitoring of 2S 0114+65 with INTEGRAL/IBIS. Mon Not RAS 413:1083–1098. doi:10.1111/j.1365-2966.2010.18192.x. arXiv:1012.3211

  • Wang W (2013) Spin and spectral variations of a peculiar high-mass X-ray binary 4U 2206+54. Mon Not RAS 432:954–966. doi:10.1093/mnras/stt516. arXiv:1303.5507

  • Warwick RS, Norton AJ, Turner MJL, Watson MG, Willingale R (1988) A survey of the galactic plane with EXOSAT. Mon Not RAS 232:551–564

    Article  ADS  Google Scholar 

  • Watanabe S, Sako M, Ishida M, Ishisaki Y, Kahn SM, Kohmura T, Morita U, Nagase F, Paerels F, Takahashi T (2003) Detection of a fully resolved compton shoulder of the iron K\(\alpha \) line in the Chandra X-ray spectrum of GX 301-2. Astrophys J Lett 597:L37–L40. doi:10.1086/379735. arXiv:astro-ph/0309344

  • Watanabe S, Sako M, Ishida M, Ishisaki Y, Kahn SM, Kohmura T, Nagase F, Paerels F, Takahashi T (2006) X-ray spectral study of the photoionized stellar wind in Vela X-1. Astrophys J 651:421–437. doi:10.1086/507458. arXiv:astro-ph/0607025

  • Watson MG, Warwick RS, Ricketts MJ (1981) 2S1145-619—an X-ray pulsar in an eccentric binary system. Mon Not RAS 195:197–203

    Article  ADS  Google Scholar 

  • Wen L, Remillard RA, Bradt HV (2000) X1908+075: an X-ray binary with a 4.4 day period. Astrophys J 532:1119–1123. doi:10.1086/308604. arXiv:astro-ph/9907424

  • Wheaton WA, Doty JP, Primini FA, Cooke BA, Dobson CA, Goldman A, Hecht M, Howe SK, Hoffman JA, Scheepmaker A (1979) An absorption feature in the spectrum of the pulsed hard X-ray flux from 4U0115 + 63. Nature 282:240–243. doi:10.1038/282240a0

    Article  ADS  Google Scholar 

  • White NE, Pravdo SH (1979) The discovery of 38.22 second X-ray pulsations from the vicinity of OAO 1653-40. Astrophys J Lett 233:L121–L124. doi:10.1086/183089

    Article  ADS  Google Scholar 

  • White NE, Mason KO, Sanford PW, Murdin P (1976) The X-ray behaviour of 3U 0352+30 (X Per). Mon Not RAS 176:201–215

    Article  ADS  Google Scholar 

  • White NE, Parkes GE, Sanford PW, Mason KO, Murdin PG (1978) Two X-ray periodicities from the vicinity of 4U1145-61. Nature 274:664–666. doi:10.1038/274664a0

    Article  ADS  Google Scholar 

  • White NE, Becker RH, Pravdo SH, Boldt EA, Holt SS, Serlemitsos PJ (1980) The X-ray pulsars 4U 1145-61 and 1E 1145.1-6141. Astrophys J 239:655–660. doi:10.1086/158152

    Article  ADS  Google Scholar 

  • White NE, Swank JH, Holt SS (1983) Accretion powered X-ray pulsars. Astrophys J 270:711–734. doi:10.1086/161162

    Article  ADS  Google Scholar 

  • White NE, Mason KO, Giommi P, Angelini L, Pooley G, Branduardi-Raymont G, Murdin PG, Wall JV (1987) A 25 min modulation from the vicinity of the unusually soft X-ray source X0142+614. Mon Not RAS 226:645–654

    Article  ADS  Google Scholar 

  • Wilson CA, Finger MH, Coe MJ, Laycock S, Fabregat J (2002) A decade in the life of EXO 2030+375: a multiwavelength study of an accreting X-ray pulsar. Astrophys J 570:287–302. doi:10.1086/339739. arXiv:astro-ph/0201227

  • Wilson CA, Finger MH, Coe MJ, Negueruela I (2003) XTE J1946+274 = GRO J1944+26: an enigmatic Be/X-ray binary. Astrophys J 584:996–1007. doi:10.1086/345791. arXiv:astro-ph/0211124

  • Wilson CA, Finger MH, Camero-Arranz A (2008) Outbursts large and small from EXO 2030+375. Astrophys J 678:1263–1272. doi:10.1086/587134. arXiv:0804.1375

  • Winkler C, Courvoisier TJL, Di Cocco G, Gehrels N, Giménez A, Grebenev S, Hermsen W, Mas-Hesse JM, Lebrun F, Lund N, Palumbo GGC, Paul J, Roques JP, Schnopper H, Schönfelder V, Sunyaev R, Teegarden B, Ubertini P, Vedrenne G, Dean AJ (2003) The INTEGRAL mission. Astron Astrophys 411:L1–L6. doi:10.1051/0004-6361:20031288

  • Yamamoto T, Sugizaki M, Mihara T, Nakajima M, Yamaoka K, Matsuoka M, Morii M, Makishima K (2011) Discovery of a cyclotron resonance feature in the X-ray spectrum of GX 304-1 with RXTE and Suzaku during outbursts detected by MAXI in 2010. Publ ASJ 63:751. arXiv:1102.4232

  • Yamamoto T, Mihara T, Sugizaki M, Sasano M, Makishima K, Nakajima M (2013) Discovery of cyclotron-line feature at 76 keV from Be/X-ray binary pulsar, GRO J1008-57. Astron Telegr 4759:1

    ADS  Google Scholar 

  • Yamauchi S, Aoki T, Hayashida K, Kaneda H, Koyama K, Sugizaki M, Tanaka Y, Tomida H, Tsuboi Y (1995) New transient X-ray source in the scutum region discovered with ASCA. Publ ASJ 47:189–194

  • Yan J, Zurita Heras JA, Chaty S, Li H, Liu Q (2012) Multi-wavelength study of the Be/X-ray binary MXB 0656-072. Astrophys J 753:73. doi:10.1088/0004-637X/753/1/73. arXiv:1205.0063

  • Zhang SN, Harmon BA, Paciesas WS, Fishman GJ, Finger MH, Robinson CR, Rubin BC, Grindlay JE, Barret D, Tavani M, Kaaret P, Bloser P, Ford E (1996) Periodic transient hard X-ray emission from GRO 1849-03. Astron Astrophys Suppl 120:C227

    ADS  Google Scholar 

  • Zhang S, Qu JL, Song LM, Torres DF (2005) Recovery of the orbital parameters and pulse evolution of V0332+53 during a huge outburst. Astrophys J Lett 630:L65–L68. doi:10.1086/462415. arXiv:astro-ph/0507468

  • Ziolkowski J (1977) Origin and present evolution of massive X-ray binaries. In: Papagiannis MD (ed) Eighth Texas symposium on relativistic astrophysics, annals of the New York Academy of Sciences, vol 302, p 47. doi:10.1111/j.1749-6632.1977.tb37036.x

  • Zurita Heras JA, Chaty S (2009) Discovery of an eccentric 30 day period in the supergiant X-ray binary SAX J1818.6-1703 with INTEGRAL. Astron Astrophys 493:L1–L4. doi:10.1051/0004-6361:200811179. arXiv:0811.2941

  • Zurita Heras JA, Walter R (2009) INTEGRAL and XMM-Newton observations of AX J1845.0-0433. Astron Astrophys 494:1013–1019. doi:10.1051/0004-6361:200810219. arXiv:0811.0983

  • Zurita Heras JA, de Cesare G, Walter R, Bodaghee A, Bélanger G, Courvoisier TJL, Shaw SE, Stephen JB (2006) IGR J17252-3616: an accreting pulsar observed by INTEGRAL and XMM-Newton. Astron Astrophys 448:261–270. doi:10.1051/0004-6361:20053876. arXiv:astro-ph/0511115

  • Zurita-Heras JA, Chaty S, Prat L, Rodriguez J (2009) Spectral evolution along the orbit of igr j163204751 with xmmnewton. AIP Conf Proc 1126(1):313–315. doi:10.1063/1.3149440

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain) and with the participation of Russia and the USA. This work was supported by a grant from the Scientific & Technological Cooperation Programme Switzerland-Russia. AAL acknowledges support by the grant of the Russian Science Foundation 14-22-00271. We thank Ed. van den Heuvel for carefully reading our manuscript and providing detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Walter.

Appendix: Notes on individual sources

Appendix: Notes on individual sources

IGR J00370+6122 was discovered in 2003 during the deep observations of the Cassiopeia region with the INTEGRAL observatory (Hartog et al. 2004). Studying the nature of the source Reig et al. (2005b) found that the optical counterpart is neither a Be star nor a supergiant star (the most adequate classification was to be B0.5 II-III at the distance of \({\sim }3\) kpc) and so IGR J00370+6122 appears difficult to fit within the classical classification scheme of HMXBs (see, however, González-Galán et al. 2014 for the recent classification of the source as a BN0.7Ib and discussion its possible supergiant nature). Later Hartog et al. (2006) and in’t Zand et al. (2007) showed that the source is a recurrent transient X-ray pulsar (with a spin period of \(P_{\mathrm{spin}}\simeq 359\) s) in an eccentric orbit (with the orbital period \(P_\mathrm{orb}=15.667\) days), demonstrating s flaring behaviour within a dynamic range about 10–20.

1A 0114+650 has been shown to be a rather unusual source. It was discovered by the SAS-3 observatory during the galactic plane survey and was identified with a bright early type optical star (Dower et al. 1977), exhibiting properties consistent with both Be and supergiant X-ray binaries. The source nature was debated several years until Crampton et al. (1985) classified the optical star as B0.5 with the luminosity class I or II, i.e. as a supergiant at the distance 7.2 kpc (Reig et al. 1996). Using the optical data Crampton et al. (1985) determined also an orbital period of the system \(P_\mathrm{orb}\simeq 11.6\) days, which was confirmed later in X-rays by Corbet et al. (1999a). 1A 0114+650 is the X-ray pulsar with one of the longest known pulse periods \(P_{\mathrm{spin}}\simeq 2.65\) h (Farrell et al. 2008), which evolved on the time scale of several years (Wang 2011). In addition to pulse and orbital variabilities in the system there is a superorbital periodicity with the period of 30.7 days (Farrell et al. 2006).

IGR J01363+6610 was discovered with the INTEGRAL observatory during galactic plane scans (Grebenev et al. 2004b). The follow-up observations with the XMM-Newton observatory revealed a faint variable X-ray source inside the INTEGRAL error box. This source has a hard power law spectrum with a photon index of \(1.4\pm 0.3\) and, based on the optical data, was associated with the Be-star as an optical companion in the binary system (Tomsick et al. 2011). The distance estimate \({\sim }2\) kpc indicates a very low quiescent X-ray luminosity of the source \({\simeq }10^{32}\) erg/s. A possible \({\simeq }160\) days orbital period was found in the Swift/BAT data (Corbet and Krimm 2010).

RX J0146.9+6121 belongs to the class of low-luminosity persistent systems with Be-companions (see Reig 2011, for details). Similarly to other such systems its spectrum is characterised by a presence of the soft thermal component with the temperature of \(kT\sim 1\) keV and the power-low tail at higher energies (La Palombara and Mereghetti 2006). The source is the X-ray pulsar with a quite long pulse period of \(P_{\mathrm{spin}}\simeq 25\) min, which was discovered by the EXOSAT observatory and erroneously related to the nearby source 4U 0142+614 (White et al. 1987; Reig 2011). The system is located in the open cluster NGC 663 at a distance of 2.5 kpc (Tapia et al. 1991).

4U 0115+63 was discovered by the UHURU observatory in the early 1970s by Giacconi et al. (1972), Forman et al. (1978). During the SAS-3 observations in 1978, Cominsky et al. (1978) found a pulsation period of 3.61 s. Rappaport et al. (1978) determined the binary’s main parameters: orbital period of \({\sim }24.3\) days, orbital eccentricity 0.34,and projected semimajor axis of the relativistic object \(a_{x}\sin i\sim 140\) light seconds (see also Tamura et al. 1992; Lutovinov et al. 1994, for an improvement of the parameters). Optical observations of the star V635 Cas (Hutchings and Crampton 1981; Kholopov et al. 1981), which is the counterpart associated to the X-ray source 4U0115\(+\)63, were performed by Negueruela and Okazaki (2001). These data allowed the authors to firmly classify this object as a B0.2Ve star and estimated a distance to the source of 7–8 kpc. The X-ray pulsar 4U 0115+63 is unique in its spectral characteristics. At present, it is the only object in which a cyclotron line was detected in the X-ray spectrum together with its higher harmonics up to the fourth order. Properties of this cyclotron feature were studied in detail using data of many observatories (Wheaton et al. 1979; White et al. 1983; Mihara et al. 1998; Heindl et al. 1999; Santangelo et al. 1999; Lutovinov et al. 2000). Particularly, Mihara et al. (1998, 2004) found that the position of the fundamental cyclotron line in the energy spectrum depends on the pulsar luminosity. Later, this effect was confirmed using the RXTE and INTEGRAL data (Nakajima et al. 2006; Tsygankov et al. 2007; Klochkov et al. 2011; Boldin et al. 2013). Such a behaviour can be explained either by the modification of the emitting regions in the vicinity of the neutron star or by artificial effects due to poor knowledge of the spectral continuum (Ferrigno et al. 2009; Müller et al. 2013; Boldin et al. 2013).

IGR J01583+6713 is a high mass X-ray binary with the Be companion star (type B2IVe) located at a distance about 4 kpc (Kaur et al. 2008). The sources was discovered by the INTEGRAL observatory during observations of the Cas A region in 2005 (Steiner et al. 2005). The follow-up observations with the XRT telescope of the Swift observatory revealed a strong absorption in the source spectrum \(N_H\simeq 10^{23}\) cm\(^{-2}\) (Kennea et al. 2005) and a presence of possible pulsations in its light curve with the period \(P_{\mathrm{spin}}\simeq 469.2\) s (Kaur et al. 2008). Note, that the latter result was not confirmed by Tomsick et al. (2011) based on the XMM-Newton and Chandra data.

V 0332+53 was first detected by the Vela 5B observatory in 1973 (Terrell et al. 1982) during an outburst when its intensity reached \({\sim }1.4\) Crab in the \(3{-}12\) keV energy band. During subsequent outbursts in 1983–1984 and 1989, observed with the EXOSAT and Ginga observatories, respectively, the spin (\({\sim }4.4\) s) and orbital (\({\sim }34.25\) days) periods were determined by Stella et al. (1985). The cyclotron resonance scattering feature with an energy of \(E_{\mathrm{cyc}}=28.5\pm 0.5\) keV was detected in its spectrum Makishima et al. (1990). Based of the results of long-term monitoring campaign of Be/X-ray binaries with the Southampton/Valencia/SAAO, Negueruela et al. (1999) determined the spectral class of BQ Cam—the normal companion of the X-ray pulsar V 0332+53—as O8–9Ve and estimated the distance to the system at \({\sim }7\) kpc. The last leads to the maximum source luminosity of \({\sim }4\times 10^{38}\) erg/s observed during outbursts, that make it one of the brightest X-ray sources in the Galaxy. The next powerful outburst of V 0332+53 began at the end of 2004 (Swank et al. 2004). An analysis of the follow-up observations performed with the RXTE and INTEGRAL observatories showed that beside the absorption feature at an energy of \({\sim }26\) keV, there are two additional similar features in the source spectrum at energies of \({\sim }49\) and \({\sim }75\) keV, which were interpreted as the second and third harmonics of the main cyclotron frequency (Kreykenbohm et al. 2005; Pottschmidt et al. 2005). A good coverage of the whole outburst (including rising and declining parts) with the RXTE observations allowed to Tsygankov et al. (2006, 2010) to make a detailed spectral analysis and to show that the cyclotron line energy is not a constant but negatively correlated with the source luminosity and to obtain constraints on the magnetic field in the source as \(B_{{\mathrm {NS}}}\simeq 3.5\times 10^{12}~{\mathrm {G}}\). Moreover, the line energy as well as its width and depth are also strongly variable on the pulse period scale (Lutovinov et al. 2015).

4U 0352+309/X Persei is a classical persistent Be/X-ray binary system, consisting of an X-ray pulsar and a Be-star companion optically identified with the star HD 24534 (spectral type B0Ve). It was discovered during a high X-ray intensity state in 1972 and pulsations with the period of \(P_{\mathrm{spin}}\simeq 835\) s were detected by the Copernicus observatory (White et al. 1976). A distance to the source is estimated by different authors in the range of 700 to 1300 pc, but more often the value of \(950\pm 200\) pc is used (Telting et al. 1998). Adopting this distance the source peak luminosity \(L_X\simeq 2\times 10^{35}\) erg/s was registered in 1975, 2003 and 2010 (Lutovinov et al. 2012a). Delgado-Martí et al. (2001) succeeded in determining orbital parameters for X Persei and showed that it is in a moderately eccentric orbit (\(e\simeq 0.11\)) with a very long \(P_\mathrm{orb}\simeq 250\) days orbital period. Deep observations performed with the INTEGRAL observatory allowed to detect the hard X-ray emission from X Persei up to \({\simeq }160\) keV (Doroshenko et al. 2012b; Lutovinov et al. 2012a) that is non-typical for X-ray pulsars. In the X Persei spectrum there is also a strong absorption feature near the energy of \({\simeq }30\) keV. It was discovered by Coburn et al. (2001) based on the RXTE data and interpreted as a cyclotron resonance scattering feature that allowed to estimate a magnetic field on the neutron star surface \(B_\mathrm{NS}\simeq (2.4-2.9)\times 10^{12}~\mathrm{G},\) (Lutovinov et al. 2012a). This line was found to be significantly broader than is typically observed in X-ray pulsars (Coburn et al. 2002) that allowed other authors interpreted it as an artificial deficit of photons in the region where the different spectral components overlap (Salvo et al. 1998; Doroshenko et al. 2012b). Due to a source proximity, it is extremely bright in the optical and infrared wavebands (\(m_{V,B}\simeq 6\)) that is allowing to investigate and modeling the physical properties and behaviour of Be-systems at different time scales (see, e.g. Roche et al. 1993; Clark et al. 2001b; Okazaki and Negueruela 2001).

RX J0440.9+4431 was found during the ROSAT Galactic plane survey with the optical companion BSD 24-491/LS V +44 17 classified as a Be star (Motch et al. 1997). Distance to the system was estimated as \(3.3\pm 0.5\) kpc (Reig et al. 2005a). For the first time RX J0440.9+4431 was detected in the hard X-ray energy band by the INTEGRAL observatory during the Type I outburst in September 2010 (Krivonos et al. 2010; Tsygankov et al. 2012). Before this the source belonged to the small population of persistent low-luminosity binaries with Be companions and a slowly rotating neutron star (the pulse period is \({\sim }202.5\)) . Based of a set of equally spaced in time Type I outbursts (each of them have the \(3{-}100\) keV luminosity about \(\hbox {few}\times 10^{36}\) erg/s) in 2010–2011 (Morii et al. 2010; Krivonos et al. 2010) it became possible to estimate the orbital period of RX J0440.9+4431 as \({\sim }155\) days (Tsygankov et al. 2011). The spectral analysis of the INTEGRAL data revealed a \({\sim }32\) keV cyclotron resonant scattering feature in the source spectrum, that corresponds to the magnetic field strength of the neutron star surface \(B\simeq 3.2\times 10^{12}\) G (Tsygankov et al. 2012). Moreover, the source spectrum is rather hard and its emission is clearly detected above 100 keV (Krivonos et al. 2015).

A 0535+262 is a typical Be/XRP transient discovered with Ariel V during a giant (Type II) outburst (Rosenberg et al. 1975). Besides giant outbursts not related to the specific orbital phase, the source demonstrates also normal (Type I) outbursts linked to the periastron passages of the neutron star (see, e.g. Giovannelli and Graziati 1992). The binary system consists of a B0IIIe star HDE 245770 at the distance of \({\sim }2\) kpc (Steele et al. 1998) and a neutron star rotating with a spin period \({\sim }103\) s. The orbit is highly eccentric (\(e\sim 0.47\)) with a period of \({\sim }111.1\) days (Finger et al. 1996b). The energy spectrum of A 0535+262 is modified by two absorption features at \({\sim }45\) and \({\sim }100\) keV, which are interpreted as a cyclotron absorption line and its first harmonic. The magnetic field strength on the neutron star surface can be estimated as \(B\sim 4\times 10^{12}\) G (Kendziorra et al. 1994; Grove et al. 1995). A comprehensive analysis of the INTEGRAL, RXTE and Suzaku spectral data does not reveal variations of the cyclotron energy during outbursts (Caballero et al. 2013).

IGR J06074+2205 was discovered in 2003 with the JEM-X telescope on board the INTEGRAL observatory (Chenevez et al. 2004). A number of studies were dedicated to the search of the optical counterpart of this source (Halpern and Tyagi 2005; Tomsick et al. 2006b; Masetti et al. 2006a; Reig and Zezas 2009; Reig et al. 2010). Finally Reig et al. (2010) identified it with a relatively bright (\(V = 12.3\)) B0.5Ve star located at a distance of \({\sim }4.5\) kpc.

2E 0655.8-0708 (better known as MXB 0656-072) is a transient X-ray source in the Galactic plane discovered in 1975 with the SAS-3 observatory (Clark et al. 1975). Pulsations of the X-ray flux with a period \({\sim }160.7\) s were found with RXTE/PCA (Morgan et al. 2003). An optical companion was identified with a O9.7Ve star (Pakull et al. 2003) at the distance of \(3.9\pm 0.1\) kpc (McBride et al. 2006). An orbital period was estimated from SWIFT/BAT and RXTE/ASM data as \({\sim }101.2\) days (Yan et al. 2012). During the strong Type II outburst in 2003 the detailed spectral analysis of MXB 0656-072 was performed using RXTE data (Heindl et al. 2003). To describe the source spectrum the standard model of power law with the high-energy cutoff was modified by an iron and cyclotron absorption lines. Best fit parameters were: photon index \(1.09\pm 0.01\), cutoff energy \(E_{\mathrm{cut}}=16.8\pm 0.1\) keV, exponential folding energy \(E_{\mathrm{fold}}=11.5\pm 0.3\) keV, cyclotron line energy \(E_{\mathrm{cycl}}=36\pm 1\) keV. A slightly different parametrisation of the spectral model gives the cyclotron line energy \(32.8^{+0.5}_{-0.4}\) keV which is stable through the outburst and over the pulsar spin phase (McBride et al. 2006).

IGR J08408-4503 was discovered in the Vela region on 15 May 2006 with INTEGRAL during a short flare lasting less than 1000 s (Götz et al. 2007). Its optical counterpart was later identified as the supergiant star HD 74194 located at 3 kpc, thus confirming that this source belongs to the SFXT class (Götz et al. 2007; Masetti et al. 2006a). IGR J08408-4503 was observed in outburst several times with INTEGRAL and Swift (Götz et al. 2007; Leyder et al. 2007; Sidoli et al. 2009c; Barthelmy et al. 2009). Observations of the source in the lower X-ray activity state were performed with Swift, XMM-Newton and Suzaku (Kennea and Campana 2006; Bozzo et al. 2010; Sidoli et al. 2010). These revealed the presence of a peculiar soft (\(<\)2 keV) spectral component possibly associated with the X-ray emission from the supergiant wind itself. IGR J08408-4503 is the best suited SFXT to study soft spectral components as it is on average the less absorbed one.

Vela X-1 is the archetype of the persistent classical sgHMXBs. The pulsar (1.86 M\(_{\odot }\); spin 283 s) orbits a B0.5Ib supergiant in 8.964 days on an almost circular (\(e\approx 0.09\); \(R=1.76 R_*\)) trajectory (Quaintrell et al. 2003), see however Koenigsberger et al. (2012). The strong and continuous X-ray variability observed (Kreykenbohm et al. 2008) has been explained by wind clumping (Fürst et al. 2010), self-criticality of the wind-fed accretion flow (Manousakis et al. 2012), magnetic gating (Doroshenko et al. 2011) or transition of cooling mechanism (Shakura et al. 2013). Vela X-1 is one of the few systems where the influence of photo-ionisation can be studied (Watanabe et al. 2006; Krtička et al. 2012; Manousakis and Walter 2015a). The pulse profile changes with energy and variable cyclotron absorption features are detected (Doroshenko et al. 2011; Fürst et al. 2014b). Small variations of the spin period have been observed on various time scales (Bildsten et al. 1997). Vela X-1 is a runaway system accompanied by a bow shock (Kaper et al. 1997).

GRO J1008-57 was discovered during the bright outburst in 1993 with CGRO/BATSE as an X-ray source pulsating with a period \(93.587\pm 0.005\) s (Stollberg et al. 1993). An optical counterpart was identified with a B1-B2 Ve star (Coe et al. 2007) at a distance of \({\sim }5\) kpc (Coe et al. 1994a). Orbital parameters were determined using data from different observatories as follows: \(P_{\mathrm{orb}}=249.46\pm 0.10\) days, \(a_x\) sin \(i=530\pm 60\) lt-s, \(\omega =-26\pm 8\) deg, \(e = 0.68\pm 0.02\) (Levine and Corbet 2006; Coe et al. 2007; Kuehnel et al. 2012). The combined spectrum from the CGRO and ASCA observations can be well approximated by a power law with the high-energy cutoff and a 6.4-keV iron emission line (Shrader et al. 1999). An approximation of the INTEGRAL data results in the following spectral parameters: photon index \(1.4\pm 0.1\), cutoff energy \(E_{\mathrm{cut}}=8.0\pm 1.0\) keV, exponential folding \(E_{\mathrm{fold}}=21\pm 2\) keV (Coe et al. 2007). Based on the Suzaku data Yamamoto et al. (2013) discovered a cyclotron line in the source spectrum at \(E_{\mathrm{cyc}} = 75.5^{+2.5}_{-1.5}\) keV. This detection reconfirms the previously suggested spectral feature around \({\sim } 80\) keV (Shrader et al. 1999).

IGR J10101-5654 was detected by the INTEGRAL observatory at high energies (\({>}20\) keV) in 2004 during observations of the Carina region (Kuiper et al. 2006). The NIR spectrum is very rich with many strong emission lines, originating from different media, that suggests the presence of a stratified circumstellar environment. This allowed Coleiro et al. (2013) to suggest the companion star to be a sgB[e]. Chandra observations revealed a significant change in the mass accretion rate onto the compact object and determined spectral parameters as: photon index \(1.0^{+0.5}_{-0.4}\), photo-absorption \(N_H=3.2^{+1.2}_{-1.0} \times 10^{22}\) cm\(^{-2}\) (Tomsick et al. 2008).

3U 1022-55 (also known as 4U 1036-56 and RX 1037.5-5647) appeared in the Uhuru catalogue (Giacconi et al. 1972). The optical counterpart of the system is a B0 V-IIIe star LS 1698 at the distance of \({\sim }5\) kpc (Motch et al. 1997). Timing analysis of the RXTE data revealed pulsations in the source flux with a period of \(P\simeq 860\) s and it was suggested that the system belongs to the subclass of persistent Be/X-ray systems with slowly rotating neutron stars (Reig 2011). A possible association of 4U 1036-56 with the unidentified transient gamma-ray source AGL J1037-5708 was discussed by Li et al. (2012a). It is interesting to note that the black body component with \(kT_{\mathrm{BB}} = 1.26^{+0.16}_{-0.09}\) keV and \(R_{\mathrm{BB}} = 128^{+13}_{-21}\) m (La Palombara et al. 2009) is present in the source spectrum in addition to the typical pulsars components—power law and the high-energy cutoff (White et al. 1983). This thermal emission suggests its polar-cap origin and can be characteristic of all low-luminosity Be systems (see, e.g. La Palombara and Mereghetti 2006; La Palombara et al. 2009; Tsygankov et al. 2012).

Cen X-3 is the first X-ray pulsar discovered with a spin period of 4.8 s (Giacconi et al. 1971). It orbits an O6.5 II-III supergiant, located at 5–8 kpc (Day and Tennant 1991; Krzeminski 1974), in 2.1 days with a small eccentricity, if any (van der Meer et al. 2007; Falanga et al. 2015). Mass transfer probably occurs through a combination of wind and disk accretion (Petterson 1978; Tsunemi et al. 1996; Tjemkes et al. 1986; Kohmura et al. 2001; Suchy et al. 2008). A cyclotron absorption feature is detected (Nagase et al. 1992; Santangelo et al. 1998; Heindl and Chakrabarty 1999). Iron line variability indicate fluorescence on several components (Devasia et al. 2010).

1A 1118-615 is a peculiar Be system with a long spin period (406 s, Staubert et al. 2011) for a short orbital period (24 days, Staubert et al. 2011). Three type II outbursts have been detected in 38 years featuring correlated X-rays and H\(\alpha \) fluxes (Coe et al. 1994b). A cyclotron absorption feature at 55 keV (Doroshenko et al. 2010b) and QPOs (Nespoli and Reig 2011) have been detected leading to the magnetic field estimations of \((7{-}8)\times 10^{12}\) G. The companion is a O9.5IV-Ve star located at 3–7 kpc (Janot-Pacheco et al. 1981).

IGR J11215-5952 is an SFXT displaying a regular outbursting activity during the periastron passage (Sidoli et al. 2007). The system geometry could be well understood through the long-term monitoring performed with Swift /XRT and the orbital period has been measured at \(\sim \)165 days (Romano et al. 2009c). This source has been observed in outburst many times with INTEGRAL and Swift, and it is known to host a \(\sim \)186 s spinning NS (Swank et al. 2007). Due to the peculiar regularity in the occurrence of its outburst, IGR J11215-5952 is suggested to be an evolutionary link between SFXTs and BeXRBs (Liu et al. 2011). A detailed study of the supergiant star hosted in this system was presented by Lorenzo et al. (2014). This study did not reveal any particularly relevant peculiarity from the star that is classified as a normal B0.5 Ia supergiant.

IGR J11305-6256 was discovered by INTEGRAL in 2004 (Produit et al. 2004). The companion star was identified as the B0IIIe star HD100199 located at about 3 kpc (Masetti et al. 2006a). The broad-band X-ray spectrum, moderate absorption and transient X-ray activity led La Parola et al. (2013) to classify the source as a Be X-ray binary. These authors also reported on the discovery of the source orbital period at 120.83 days and noticed that the average orbital modulation of the X-ray emission from IGR J11305-6256 is relatively low compared to other sources in the same class. No X-ray pulsations have been detected so far.

IGR J11435-6109 was discovered by INTEGRAL in 2004 (Grebenev et al. 2004a). Pulsations at a period of \(\sim \)166 s were first reported by Swank and Markwardt (2004) and later confirmed by Revnivtsev et al. (2005). The orbital period of the source is 52.5 days (Corbet and Remillard 2005). The precise X-ray localization of IGR J11435-6109 obtained through a Chandra observation (Tomsick et al. 2007) permitted to identify the companion star in this object as a B0Ve/B2Ve located at \(\gtrsim \)6–10 kpc (Negueruela et al. 2007b). The source is thus a distant Be X-ray binary (see also Coleiro et al. 2013).

4U 1145-619 was first mentioned in the second UHURU catalogue (Giacconi et al. 1972). Subsequent examination of its localization error box in optics revealed inside a relatively bright star (\(V\simeq 9\)) with a spectral type B1Vne (Jones et al. 1974). These optical identification and spectral classification were later confirmed by Dower et al. (1978) and Hutchings et al. (1981). In the meantime, two close X-ray periodicities with periods of \({\sim }292\) and \({\sim }297\) s were discovered from the vicinity of 4U 1145-619 (White et al. 1978). The situation was clarified with the discovery of another X-ray source 1E 1145.1-614 located only \(15^{\prime }\) away from 4U 1145-619 and demonstrated pulsations with the period of \({\sim }298\) s, while pulsations with the period \({\simeq }290\) s were attributed to 4U 1145-619 (Lamb et al. 1980). Long-term observations of 4U 1145-619 with the Ariel V observatory revealed outbursts from the source, which occurred at regular intervals of \({\simeq }187.5\) days and which were interpreted as a motion of a neutron star in a highly eccentric \(e>0.6\) orbit with the corresponding period (Watson et al. 1981). Further observations of the source performed by different observatories allowed to trace its pulse period history (see, e.g. Lutovinov et al. 1994; Bildsten et al. 1997 and references therein), to measure for the first time the source spectrum up to 100 keV (Filippova et al. 2005), etc. It is necessary to note that distance estimations from spectroscopic observations \(d=3.1\pm 0.5\) kpc (Stevens et al. 1997) are several times larger than that from the parallax measurements \(d=0.51\pm 0.24\) kpc (Clark and Dolan 1999). But for the latter measurement authors indicate that the 90 % confidence interval on the Hipparcos parallax measurement of 4U 1145-619 extends to a distance of 2.3 kpc and thus spectroscopic and astrometric parallaxes practically overlap.

1E 1145.1-6141 is a persistent sgHMXB with a pulsar (297 s spin) orbiting a companion in 14.365 days with an eccentricity of 0.2. The spectrum features constant intrinsic absorption (\(10^{23}\) cm\(^{-2}\)). Both spin-up and spin-down have been observed (Ray and Chakrabarty 2002; Ferrigno et al. 2008).

1ES 1210-646 is a poorly studied X-ray source, which was found during the Einstein Slew Survey (Elvis et al. 1992). Based on optical spectroscopy the system was classified as a HMXB (Masetti et al. 2009). An orbital modulation with a period of about 6.7 days was found by Corbet and Mukai (2008) in the RXTE/ASM data. The source spectrum near its maximum flux can be well approximated by a power law continuum with a photon index \({\simeq }1.41\), high-energy cutoff (\(E_{\mathrm{cut}} = 6.0\) keV, \(E_{\mathrm{fold}} = 5.7\) keV) and an Fe K line at 6.56 keV with an equivalent width \({\simeq }300\) eV (Corbet and Mukai 2008). Later Masetti et al. (2010a) using data from the SWIFT/XRT telescope showed that the iron line has a transient nature and is tied to the orbital motion of the neutron star.

GX 301-2 is among the brightest HMXB (\(L_X\sim 10^{37}\) erg/s), thanks to the slow (3–400 km/s) and very dense stellar wind of its hyper giant companion (Kaper et al. 1995, 2006). The highly eccentric (\(e\sim 0.5\)) pulsar orbit (Sato et al. 1986; Koh et al. 1997) generates a strong orbital modulation of the accretion rate with a broad maximum at phase 0.95 linked with a circumstellar disk or an accretion stream (Leahy and Kostka 2008). The absence of eclipse constrains the inclination angle in the range \((44^{\circ }{-}78^{\circ })\). A deep and variable cyclotron resonance feature is observed at hard X-rays (Kreykenbohm et al. 2004; Filippova et al. 2005; Fürst et al. 2011b). Spin-up episodes have been observed and explained by the formation of transient accretion disks (Koh et al. 1997). Fast spin-down episodes have been interpreted as evidence for a \(10^{14}\) G surface magnetic field (Doroshenko et al. 2010a) or as accretion of magnetised material (Ikhsanov and Finger 2012). Off-states were detected (Göğüş et al. 2011; Suchy et al. 2012), similar to the ones observed in Vela X-1. The soft X-ray spectrum is affected by variable partial coverage of two different absorbers (Watanabe et al. 2003; Suchy et al. 2012).

GX 304-1 was discovered during a high-energy X-ray balloon observations in 1967. A pulsar nature of the source was established with the detection of \({\sim }272\) s pulsations (Huckle et al. 1977; McClintock et al. 1977). Later a long-term study with the Vela 5B satellite revealed a 132.5-day periodicity of flaring events (Priedhorsky and Terrell 1983), attributable to the binary period. An optical companion in the system is a Be star (Mason et al. 1978) at a distance of \(2.4\pm 0.5\) kpc (Parkes et al. 1980). Recently, it was shown that additionally to the standard X-ray pulsar spectrum model an inclusion of the cyclotron absorption line with energy \(E_{\mathrm{cyc}} = 50.8\pm 0.5\) keV, width \(\sigma = 8.2\pm 1.4\) keV and depth \(\tau = 0.76\pm 0.05\) is required for the correct approximation of the source spectrum (Mihara et al. 2010). Later, Yamamoto et al. (2011) and Klochkov et al. (2012) using the data from different observatories (including INTEGRAL) revealed a positive correlation between the cyclotron line energy and the source flux (see Fig. 11). Observations with the Fermi/GBM instruments showed that a strong outburst activity of the source is accompanied by significant changes in the source pulse period. The latter can be explained in the frame of the quasi-spherical settling accretion onto the neutron star (Postnov et al. 2015).

2RXP J130159.6-635806 is a faint X-ray source, discovered by the ROSAT observatory during all sky survey (sometimes this source is named IGR 13020-6359 as well, due to its first detection in hard X-ray with INTEGRAL). The sky field around the source was observed several times in different epochs by different observatories (ASCA, BeppoSAX, XMM-Newton), but only after the source detection with the INTEGRAL observatory (Chernyakova et al. 2004) the detailed analysis of the archival and follow-up data was done. This analysis allowed Chernyakova et al. (2005) to discover pulsations from the source with the period \(P_{\mathrm{spin}}\simeq 700\) s and trace its evolution up to \({\sim }10\) years before. The study of a set of observations has shown that the pulse period changed from \({\sim }735\) s in 1994 to \({\sim }704\) s in 2004. (Chernyakova et al. 2005) proposed also a possible optical counterpart of the source as a Be-star and obtained a tentative estimate of the distance to the binary system as 4–7 kpc. Subsequent infrared spectral observations confirmed suggestions about the source nature and allowed Coleiro et al. (2013) to constrain its spectral type to B0.5Ve. Recent observations with the NuSTAR observatory revealed an unusually steady long-term spin-up in this system, when the pulse period was dramatically changed of about 100 s during \({\sim }20\) years (Krivonos et al. 2015).

4U 1416-62/2S 1417-624 is a well-known transient X-ray pulsar in a binary system with a Be-companion star, which was discovered with the SAS-3 observatory. Using these data Apparao et al. (1980) found pulsations from the source with the period \(P_{\mathrm{spin}}\simeq 17.64\) s. Based on the accurate measurements of the source position with the Einstein observatory and following optical observations it was shown that an optical counterpart in the system is a Be star (Grindlay et al. 1984) with a spectral type B1Ve (Reig 2011). Long observations performed with the BATSE instrument on board the Comptom-GRO observatory in 1994 allowed to determine orbital parameters of the system and showed that a neutron star is orbiting in a highly eccentric orbit (eccentricity \(e=0.446\)) with the period \(P_\mathrm{orb}=42.12\) days (Finger et al. 1996a). Estimates of the distance to the system have still a large uncertainty, 1.4–11.1 kpc (Grindlay et al. 1984).

IGR J14331-6112 was discovered by INTEGRAL in 2003 (Keek et al. 2006). The soft X-ray counterpart was detected first with Swift /XRT and later confirmed by Chandra (Tomsick et al. 2009a). Masetti et al. (2008) suggested that the spectral type of the companion star is BIII/BV, but this classification is still a matter of debate (Coleiro et al. 2013).

IGR J14488-5942 was presented for the first time in the 4th IBIS catalogue (Bird et al. 2010) as a transient source. Inside the INTEGRAL/IBIS error circle two X-ray sources were detected with the Swift observatory (Landi et al. 2009; Rodriguez et al. 2010). One of them, Swift J144843.3-594216, was suggested to be a true counterpart of IGR J14488-5942. A modulation of the hard X-ray flux (15\(-\)100 keV) with period around 49 days has been discovered using Swift/BAT data (Corbet et al. 2010b). Based on the NIR spectroscopy Coleiro et al. (2013) concluded that this HMXB is more likely an Oe/Be HMXB than a supergiant one.

4U 1538-522 is an eclipsing persistent sgHMXB (spin 530.4 s) with a short orbital period of 3.728 days and an eccentricity \({>}0.08\) (Davison et al. 1977; Becker et al. 1977; Makishima et al. 1987; Corbet et al. 1993; Clark et al. 1994; Clark 2000). The companion is a B0I star located at 5.5 kpc (Becker et al. 1977; Reynolds et al. 1992). Variability of the absorption at eclipse egress allows to measure the stellar wind parameters (Clark et al. 1994). The X-ray spectrum (Robba et al. 1992) displays two cyclotron absorption features (Clark et al. 1990; Robba et al. 2001; Rodes-Roca et al. 2009). Emission lines from an extended ionised region have been detected during eclipses (Rodes-Roca et al. 2011). Small spin-up and down have been detected (Rubin et al. 1997).

XTE J1543-568 was discovered as a transient X-ray pulsar with the pulse period \(P_{\mathrm{spin}}=27.12\) s with the PCA/RXTE spectrometer (Marshall et al. 2000). A long-term observational program during about a year allowed in’t Zand et al. (2001) to determine the orbital parameters of the system, in particular, its orbital period \(P_\mathrm{orb}=75.56\) days. Taking into account the source position on the pulse period–orbital period diagram and its temporal behavior these authors suggested that XTEJ1543-568 is a Be system with an unusually low eccentricity (\(e = 0.03\)). No optical counterpart has been reported to the date.

IGR J16195-4945 was discovered by INTEGRAL in 2003 (Walter et al. 2004) and associated with the ASCA source AX J161929-4945 (Sugizaki et al. 2001; Sidoli et al. 2005b). The fast flaring activity detected from this source with INTEGRAL led Sguera et al. (2006) to associate this source with the SFXT class (see also Morris et al. 2009). A Chandra observation performed in the direction of the source permitted to identify the supergiant companion and provide further support to this association (Tomsick et al. 2006a; Rahoui et al. 2008).

IGR J16207-5129 was discovered by INTEGRAL in 2003 (Walter et al. 2004). The companion star (Masetti et al. 2006a; Negueruela et al. 2007a) was classified as a B1 Ia star at \(\sim \)6.1 kpc by Nespoli et al. (2008). Due to its relatively high persistent flux a and the lack of prominent outbursts, Walter and Zurita Heras (2007); Tomsick et al. 2009b) suggested that IGR J16207-5121 belong to the class of the highly absorbed HMXBs, rather than to the SFXT class. This is supported by the results of XMM-Newton and Chandra observations, which measured an absorption column density of \(\gtrsim \)10\(^{23}\) cm\(^{-2}\) (Tomsick et al. 2009b; Bodaghee et al. 2010). The classification of this source is, however, still a matter of debate.

IGR J16318-4848 is the first source discovered with INTEGRAL (Courvoisier et al. 2003; Walter et al. 2003). XMM-Newton observation indicated that the source is Compton thick with \(N_H\approx 2\times 10^{24}\) cm\(^{-2}\) (Matt and Guainazzi 2003; Walter et al. 2003). Archive and further X-ray observations indicated a persistently bright and Compton thick source (Revnivtsev et al. 2003; Revnivtsev 2003; Ibarra et al. 2007). The hard X-ray flux detected by INTEGRAL varies by a factor of up to 10 with doubling timescale of the order of 1 hour. The absorbing column density varies significantly by a factor of two Ibarra et al. (2007). The weakness of the Iron 6.4 keV fluorescence line Compton shoulder suggests that the absorption column density is larger on the line of sight than on average (Matt and Guainazzi 2003; Barragán et al. 2009), pointing towards a disk like geometry. The source was associated with an infrared counterpart (Foschini et al. 2003) of spectral type sgB[e] (Filliatre and Chaty 2004), indicating a very rare system surrounded by dense circumstellar gas and dust (Kaplan et al. 2006) that could be the signature of an equatorial disk (Rahoui et al. 2008; Chaty and Rahoui 2012) or of a close to LBV phase (Moon et al. 2007). No period has been detected in the system.

IGR J16320-4751 is a persistent source (in’t Zand et al. 2003) serendipitously discovered with INTEGRAL (Tomsick et al. 2003). The source is highly absorbed with \(N_H\approx (1{-}2)\times 10^{23}\) cm\(^{-2}\) (Rodriguez et al. 2003). X-ray pulsations with a period of \((1309\pm 40)\) s (Lutovinov et al. 2005c) and an orbital period of 8.986 days (Corbet et al. 2005a; Manousakis and Walter 2012) (but no eclipse) have been detected. The hard X-ray flux detected by INTEGRAL varies by a factor larger than 10 and can do so in a few hours. The most likely companion star is an highly reddened O8I supergiant located at \({\sim } 3.5\) kpc (Rahoui et al. 2008). We note that IGR J16320-4751 is not related to the pulsar wind nebula HESS J1632-478 (Balbo et al. 2010).

IGR J16328-4726 was discovered with INTEGRAL by Bird et al. (2007). The source is also classified as an hard X-ray transient in the INTEGRAL /ISGRI and Swift /BAT catalogues (Bird et al. 2010; Cusumano et al. 2010). The first study of the source in the soft X-ray domain was performed as a follow-up to the bright outburst from the source caught with the Swift /BAT in 2009 (Grupe et al. 2009). In this occasion, the Swift /XRT could follow the evolution of the X-ray flux from the source up to 4 days after the onset of the outburst and revealed a typical behaviour of the SFXT sources (Fiocchi et al. 2010). Corbet et al. (2010a) reported on the discovery of the source orbital period at \(\sim \)10 days using archival Swift /BAT data. A devoted XMM-Newton observation also evidenced a pronounced flaring activity during faint X-ray states (Bozzo et al. 2012b), a behaviour already observed in a number of SFXTs. A similar flaring activity was also found in archival Beppo-SAX data (Fiocchi et al. 2013). The companion star hosted in this system is classified as a O8Iafpe supergiant (Coleiro et al. 2013).

IGR J16393-4643 is a likely persistent sgHMXB. The source is a highly absorbed (\(N_H\approx 2.5\times 10^{23}\) cm\(^{-2}\) Bodaghee et al. 2006) pulsar with a spin period of 911 s (Bodaghee et al. 2006). The orbital period is under debate with a most likely value of 4.24 days (Pearlman et al. 2011; Thompson et al. 2006; Islam et al. 2015). The companion is not yet identified (Bodaghee et al. 2012a) but its dynamical mass is estimated as \({>}7.5\) M\(_{\odot }\) (Pearlman et al. 2011; Nespoli et al. 2010a; Chaty et al. 2008).

IGR J16418-4532 was discovered by INTEGRAL in 2003 (Tomsick et al. 2004) and later classified as an SFXT on the basis of its fast flaring activity (Sguera et al. 2006). The discovery of the orbital period of the source at 3.75 days, together with some hint for the presence of an X-ray eclipse, was reported by (Corbet et al. 2006). The presence of an X-ray eclipse was later confirmed and analysed in detail by Drave et al. (2013). The source was detected in outburst few times with Swift (Romano et al. 2011c, 2012c) and monitored along its orbit with both the Swift /XRT (Romano et al. 2012d) and XMM-Newton (Sidoli et al. 2012). The observations confirmed the presence of prominent flaring activity in different X-ray luminosity states and led to the discovery of pulsations at a period of \(\sim \)1212 s (see also Walter et al. 2006). Drave et al. (2013) showed that the apparent transient behaviour of the source is most likely due to its large distance (and the consequently low intrinsic X-ray flux). When the latter is taken into account, the source behaviour in X-rays is similar to that of classical sgHMXBs (see also Bozzo et al. 2015). IGR J16418-4532 is one of the few sources for which a superorbital modulation has been detected (the period of the modulation is 14.7 days; Corbet and Krimm 2013).

IGR J16465-4507, discovered with INTEGRAL (Lutovinov et al. 2004), is a transient X-ray pulsar (spin period \(\sim \)228 s, Lutovinov et al. 2005a) which displays on average properties very similar to those of the highly absorbed HMXBs (Walter et al. 2006) but was tentatively associated with the SFXT class due to the detection of fast flaring activity with INTEGRAL (Walter and Zurita Heras 2007). The supergiant companion was first identified by Smith (2004) and then confirmed by Negueruela et al. (2005). The measured orbital period of the source is 30.3 days (Clark et al. 2010; La Parola et al. 2010a). Despite the initial association with the SFXT class, the long-term monitoring of the source carried out with Swift showed that its X-ray flux variability is fairly limited and the X-ray behaviour is close to that of classical sgHMXBs (Romano et al. 2014a; Bozzo et al. 2015).

IGR J16479-4514 is a confirmed SFXT source. It was discovered with INTEGRAL (Molkov et al. 2003b) and observed in outburst several times with Swift and INTEGRAL (Romano et al. 2008c, b; Sguera et al. 2008). This object is known to have at present the shortest orbital period among the other sources of the same class (3.3 days, Romano et al. 2009b) and is the only one displaying X-ray eclipses (Bozzo et al. 2008c). The source undergoes regularly a peculiar flaring activity close to the periastron passage, which has been reported first by (Bozzo et al. 2009) and then studied in detail through a nearly complete orbital monitoring performed with Suzaku (Sidoli et al. 2013). The latter observation also did not reveal strong variation in the spectral parameters in different orbital phases, at odds with the behaviour displayed by other SFXT sources. IGR J16479-4514 is one of the few sources for which a superorbital modulation has been detected (the period of the modulation is 11.88 days; Corbet and Krimm 2013).

IGR J16493-4348 is an eclipsing sgHMXB system with a 6.78-day orbital period and a 1093-s spin period (Pearlman et al. 2013). The X-ray spectrum shows signatures for intrinsic absorption (\(5{-}9\times 10^{22}\) cm\(^{-2}\)) and for a cyclotron absorption feature (Morris et al. 2009; D’Aì et al. 2011a). The companion star is a B0.5 Ib supergiant (Nespoli et al. 2010b). IGR J16493-4348 is one of the few sources for which a superorbital modulation has been detected (the period of the modulation is 20.07 days; Corbet and Krimm 2013).

OAO 1657-415 is a persistent eclipsing sgHMXB with a pulsar (spin 37 s) orbiting a O or WR companion in 10.448 days on an eccentric \((e=0.11)\) orbit (Mason et al. 2012). The absorbing column density is \({\ge } 2\times 10^{22}\) cm\(^{-2}\). The accretion mode alternates between disk and wind accretion (Jenke et al. 2012). The wind density profile could be constrained by the hard X-ray eclipse profile (Denis et al. 2010).

4U 1700-37 is an eclipsing X-ray source associated with a very massive companion of type O6.5Iaf+ (Jones et al. 1973). The orbital parameters have been reconstructed and the most likely mass of the compact object is 2.4 M\(_{\odot }\) (Corbet et al. 2010c). The detection of QPOs and the absence of pulsation (Dolan 2011) favour a black hole compact object while the hard X-ray spectral shape is typical for an accreting pulsar. The binary may have escaped the Sco OB1 association 2 millions years ago (Ankay et al. 2001). High-ionisation lines have been observed also during eclipses, indicating that the stellar wind is very inhomogeneous (Boroson et al. 2003). The hard X-ray flux varies by a factor of several hundreds. The absorbing column density increases around eclipses as expected for a spherical wind plus a stream trailing the neutron star (Haberl et al. 1989).

AX J1700.2-4220 was discovered as a faint ASCA source. RXTE and Swift monitoring of the source allowed to characterise it as a Be system (\(P_S=54~\hbox {s}; P_\mathrm{orb}=44~\hbox {days}\)). The optical counterpart is not yet identified.

IGR J17200-3116 was discovered during a deep observation of the Galactic Center with the INTEGRAL observatory in 2003 (Revnivtsev et al. 2004; Walter et al. 2004). The exact class of the optical counterpart and distance to the source are still unknown. Based on the XRT/Swift data, Nichelli et al. (2011) discovered pulsations from the source with the period \(P_{\mathrm{spin}}\simeq 328\) s that allowed to suggest this source as a X-ray pulsar in the high-mass X-ray binary system. More observations are required to determine the spectral type of this HMXB.

EXO 1722-363 was discovered with EXOSAT (Warwick et al. 1988) and identified as an highly obscured X-ray pulsar with Ginga (Makino 1988; Tawara et al. 1989; Takeuchi et al. 1990). The source position was refined with INTEGRAL (Lutovinov et al. 2003a; Walter et al. 2004) and further with XMM-Newton, which allowed an association with an infrared counterpart (Zurita Heras et al. 2006). Its infrared spectrum was identified with that of a supergiant B0-B1Ia star, located at a distance of \(7.1{-}7.9\) kpc (Chaty et al. 2008; Mason et al. 2009, 2010). The orbital period of 9.742 days, determined with RXTE (Markwardt and Swank 2003; Corbet et al. 2005b) and refined with INTEGRAL (Manousakis and Walter 2011) thanks to the presence of X-ray eclipses, established the system as a sgHMXB. The orbital eccentricity is smaller than 0.15. Outside of the X-ray eclipses, the X-ray (2–10 keV) luminosity varies in the range \((0.25{-}2)\times 10^{36}\) erg/s and a soft component is detected at a level of \(3\times 10^{33}\) erg/s. The spectrum is typical for an accreting pulsar with \(\varGamma \sim 0\) and a cutoff energy of \(E_C\sim 8.2\) keV. An Iron line is detected with an equivalent width of \({\sim }100\) eV, generated by material very close to the neutron star. The X-ray pulsar features a spin period of 413.89 s (with short time scale variability as large as \(1~\upmu \)s/s) and a persistently high obscuration, with an absorbing column density varying along the orbit and averaging to \(2\times 10^{23}\) cm\(^{-2}\) (Walter et al. 2006; Manousakis and Walter 2011). Detailed hydrodynamic simulations of EXO 1722-363 indicated that its high obscuration is linked with the low velocity (\({\sim } 500\) km/s) of the companion stellar wind and constrained the neutron star mass to 1.75–2.15 (Manousakis et al. 2012), a value slightly larger but compatible with the kinematic value of \(1.5\pm 0.4\) (Mason et al. 2010).

IGR J17354-3255 was discovered with INTEGRAL in 2006 (Kuulkers et al. 2006). The source only sporadically displays relatively short flares with duration from few hours to \(\sim \)1 day (Vercellone et al. 2009; Tomsick 2009) and has an orbital period of 8.4 days. For these reasons it was associated with the SFXT class (D’Aì et al. 2011b; Sguera et al. 2011). The source is also positionally coincident with the high-energy AGILE transient AGL J1734-3310, even though the localization uncertainties are still too large to claim a firm association (Vercellone et al. 2009). An XMM-Newton observation aimed at the source failed to detect it (Bozzo et al. 2012b) and set a lower limit to the dynamic range of its X-ray luminosity of \(\gtrsim \)10\(^4\). An orbital monitoring of the source with Swift suggested the presence of a possible X-ray eclipse (Ducci et al. 2013b).

XTE J1739-302 (other name IGR J17391-3021) was discovered with RXTE during a bright outburst in 1997 (Smith et al. 1998). Several outbursts from this source were detected with ASCA (Sakano et al. 2002), RXTE (Smith et al. 2006), INTEGRAL (Sunyaev et al. 2003a; Lutovinov et al. 2005b; Sguera et al. 2005, 2006; Blay et al. 2008) and Swift /BAT (Sidoli et al. 2009a, c; Romano et al. 2009b, 2011b). The source was also observed during faint X-ray states by Chandra and XMM-Newton, revealing the typical variability of the SFXT sources (Smith et al. 2006; Bozzo et al. 2010; Bodaghee et al. 2011). The discovery of the source orbital period at 51.47 days was reported by Drave et al. (2010). The identification of the supergiant companion of XTE J1739-302 was reported by (Rahoui et al. 2008).

AX J1749.1-2733 and AX J1749.2-2725 are two closely spaced (angular distance is about \(7^{\prime }\)) faint X-ray sources discovered by the ASCA observatory in the direction to the Galactic Center (Sakano et al. 2002; Torii et al. 1998). The latter one was initially recognized as an X-ray pulsar with the period \(P_{\mathrm{spin}}\simeq 220\) s (Torii et al. 1998); pulsations with the period \(P_{\mathrm{spin}}\simeq 132\) s from AX J1749.1-2733 were detected later, based on the XMM-Newton and INTEGRAL data (Karasev et al. 2007, 2008). The INTEGRAL observatory detected these sources in hard X-rays: AX J1749.1-2733 during the outburst (Grebenev and Sunyaev 2007) and on the average map (Krivonos et al. 2012), AX J1749.2-2725 on the average map (Krivonos et al. 2012). Spectra of both sources demonstrate a presence of the strong photo-absorption, which significantly exceeds the interstellar one and indicates the massive nature of their companions. An optical identification of both sources was problematic a long time. The infrared data from the NTT/SOFI telescope allowed Karasev et al. (2010a) to determine optical counterparts in both systems and estimate their spectral classes as B1-3 and B3 for AX J1749.1-2733 and AX J1749.2-2725, respectively. Moreover, based on the currently developed methods of distance estimation according to the position of red clump giants on the color-magnitude diagram (Karasev et al. 2010b), Karasev et al. (2010a) also estimated the distances to the sources as \(13{-}16\) and \({\sim }14\) kpc, respectively.

GRO 1750-27 is a transient X-ray pulsar with a pulse period \(P_{\mathrm{spin}}=4.45\) s. It was discovered by the BATSE instrument on board the Comptom-GRO observatory during a strong outburst in 1995 (Scott et al. 1997). Besides the pulse period a strong modulation of the source flux was found on a time scale of 29.8 days and interpreted as the orbital period in the binary system (Scott et al. 1997). A second outburst from the system was detected in 2008 by the Swift observatory (Krimm et al. 2008) and was monitored by several instruments. These observations allowed to measure the broadband X-ray spectrum of the source and trace the evolution of its hardness, which demonstrated a gradual softening during the outburst (Shaw et al. 2009). Moreover, the accuracy of the determination of the orbital period was improved to \(P_{\mathrm{orb}}=29.806\pm 0.001\) days (Shaw et al. 2009). Based on the source behaviour and on a relation between pulse and orbital periods (Scott et al. 1997) assumed a Be-nature of its optical counterpart and estimated a distance to the system as \({\sim }18\) kpc; however this result still needs to be confirmed.

IGR J17544-2619, discovered with INTEGRAL (Sunyaev et al. 2003b), is one of the most extreme and well-studied SFXT sources (in’t Zand 2005). The companion star was spectroscopically identified by Pellizza et al. (2006) (but see also Rahoui et al. 2008) and the orbital period was measured at 4.92 days (Clark et al. 2009). A possible indication of pulsations from the direction of the source at 71 s was reported by Drave et al. (2012) by using the RXTE/PCA, but then retracted (Drave et al. 2014). The deepest observation available was performed with the XIS on-board Suzaku (Rampy et al. 2009). In these data, the authors found evidence for the presence of clumps using hardness ratio measurements, caused by variations of the local absorption. The source was also monitored with Swift/XRT for more than two years (Romano et al. 2011a), during which a number of typical SFXT outbursts were identified. Enhanced variability in the X-ray domain was also evidenced in two relatively short observations performed with XMM-Newton in 2003 (González-Riestra et al. 2004). An unprecedentedly bright outburst was detected by the source in 2014, leading to the suggestion that temporary accretion disks might form around the neutron star hosted in this system. A possible detection of pulsations at 11.6 s (Romano et al. 2015) and of a cyclotron line at 17 keV (Bhalerao et al. 2015) were also reported.

IGR J17586-2129 was first reported by Bird et al. (2007). Using follow-up observations with the Chandra observatory Tomsick et al. (2009a) improved an accuracy of the source coordinates and determined the infrared 2MASS counterpart. In addition, these authors found a significant absorption (\({\simeq }10^{23}\) cm\(^{-2}\)) in the IGR J17586-2129 spectrum and stated that the source is a candidate to the absorbed HMXB. The infrared spectroscopic measurements revealed only the Br(7-4) emission line, that in combination with the measured spectral energy distribution points toward a supergiant companion star (Coleiro et al. 2013).

IGR J18027-2016 is a persistent eclipsing X-ray pulsar detected by INTEGRAL (Revnivtsev et al. 2004; Lutovinov et al. 2005b) and BeppoSAX (Augello et al. 2003). With a spin period of 139.612 s and an orbital period of 4.4696 days, its orbit could be reconstructed (Hill et al. 2005; Mason et al. 2011). Its X-ray continuum, typical of an accreting pulsar, is moderately absorbed with \(N_H\approx 0.9\times 10^{23}\) cm\(^{-2}\) and the presence for an Iron line (Walter et al. 2006). The companion star is likely a supergiant B1Ib located at a distance of \({\sim }12.4\) kpc (Masetti et al. 2008; Chaty et al. 2008; Torrejón et al. 2010).

IGR J18151-1052 was discovered by the INTEGRAL observatory during the Galactic plane survey (Krivonos et al. 2009). Follow-up observations of the source, performed with the XRT telescope aboard the Swift observatory, revealed a significant photo-absorption in its spectrum—up to \(3.4\times 10^{22}\) cm\(^{-2}\), that is much higher than that in the Galactic interstellar medium. A strong \(H_{\alpha }\) emission line at zero redshift was detected in the spectrum of its optical counterpart. This suggests that the object is definitely an X-ray binary in our Galaxy, probably an absorbed OB-star (Burenin et al. 2009). The further detailed analysis showed that the identification of the system as a cataclysmic variable cannot be fully ruled out and might be preferable (Lutovinov et al. 2012b; Masetti et al. 2013).

IGR J18179-1621 is a hard X-ray transient source discovered during the inner Galactic disk observations in February 2012 (Tuerler et al. 2012). X-ray pulsations with a period of \(P_{\mathrm{spin}}\simeq 11.82\) s were discovered immediately in the source light curve during follow-up observations with the XRT/Swift telescope (Halpern 2012b). The broadband spectrum of the source can be described by a power law model modified by a high-energy cutoff and strong photo-absorption (\(N_{H}\simeq 12\times 10^{22}\) cm\(^{-2}\)) at low energies (Li et al. 2012b). Thus, it can be concluded that IGR J18179-1621 is a new heavily absorbed X-ray pulsar in a HMXB. Finally, note that a type of its optical companion is still not determined.

SAX J1818.6-1703 is one of the confirmed SFXT sources and was discovered in 1998 by Beppo-SAX (in’t Zand et al. 1998a). Several outbursts from the source were detected with INTEGRAL and Swift (see, e.g. Sidoli et al. 2009b and references therein). Bird et al. (2010) and Zurita Heras and Chaty (2009) determined the best orbital period of the source at \(30\pm 0.1\) days. Zurita Heras and Chaty (2009) also found that most of the discovered outbursts took place close to the periastron passage and that the source usually remains relatively bright in X-rays for about \(\sim \)6 days around this orbital phase. Outbursts in several periastron passages were missing. SAX J1818.6-1703 was also observed twice with XMM-Newton close to the apastron, but not detected Bozzo et al. (2008a, 2012b).

AX J1820.5-1434 is a faint X-ray pulsar with the neutron star spin period \(P_{\mathrm{spin}}\simeq 152\) s, discovered by the ASCA observatory during the Galactic plane survey (Kinugasa et al. 1998). These observations revealed also a strong absorption in the X-ray spectrum (\(N_H\sim 10^{23}\) cm\(^{-2}\)). It was interpreted as an indication that AX J1820.5-1434 is a high-mass X-ray binary system, but a clear optical identification and determination of the spectral class of the optical star are still problematic (Negueruela and Schurch 2007). A detection of the hard X-ray emission from AX J1820.5-1434 with the INTEGRAL observatory (Lutovinov et al. 2003b) allowed to reconstruct the source spectrum up to \({\sim }70\) keV and to show that it is typical for X-ray pulsars in HMXB (Filippova et al. 2005). This source is also tentatively associated with the SFXT class due to the detection of fast flaring activity with INTEGRAL (Walter and Zurita Heras 2007). A timing analysis of the long-term observations with the Swift observatory revealed the detection of a coherent signal at \(P_{\mathrm{orb}}=54.0\pm 0.4\) days, which was interpreted as the orbital period of the binary system (Segreto et al. 2013).

IGR J18410-0535 (other name AX J1841.0-0536) was discovered with ASCA in 1994 (Bamba et al. 2001), while undergoing two bright flares lasting about 1 h each. Similar SFXT-like flaring activity was also recorded several times with MAXI and INTEGRAL (Rodriguez et al. 2004; Sguera et al. 2006; Walter and Zurita Heras 2007). Hours-long outbursts were also detected by Swift /BAT and followed up a few times by Swift /XRT (de Pasquale et al. 2010; Romano et al. 2010a, 2011b, 2012a, b). This behaviour led to the association of IGR J1841.0-0536 with the SFXT class. This association was strengthened by the identification of the supergiant companion through infrared observations (Nespoli et al. 2008). A 45-ks long XMM-Newton observation performed in 2011 in the direction of IGR J1841.0-0536 caught the source undergoing a bright X-ray flare, which could be interpreted in terms of sudden “ingestion” of accreting material from the dense wind environment. This observation could not confirm the presence of pulsations at \(\sim \)4.7 s, as suggested by the analysis of previous data (Bamba et al. 2001; Sidoli et al. 2008). A possible association between IGR J18410-0535 and the transient MeV EGRET source 3EG J1837-0423 was suggested by Sguera et al. (2009). The discovery of the source orbital period at 6.5 days was reported by González-Galán (2014).

GS 1843+00 is a transient X-ray pulsar discovered in 1988 by the Ginga observatory during a galactic plane scan (Makino and GINGA Team 1988b). A pulse period of 29.5 s was measured shortly (Koyama et al. 1990a). Spectroscopic and photometric data indicate a B0-B2 IV-Ve star located at a distance of \({\ge }10\) kpc as an optical counterpart (Israel et al. 2001).

IGR J18450-0435 (other name AX J1845.0-0433) was discovered by Yamauchi et al. (1995) in 1993 with the ASCA observatory and classified as a transient X-ray source. It exhibited a few hours-long flaring activity and spectral properties similar to those displayed by the SFXTs. The supergiant companion was identified by Coe et al. (1996). The source has been observed several times during periods of enhanced X-ray activity with INTEGRAL (Molkov et al. 2004; Halpern and Gotthelf 2006) and Swift (Sguera et al. 2007; Romano et al. 2009a, 2012a). In all cases, the X-ray flares displayed similar properties with respect to those detected originally with ASCA. IGR J18450-0435 was also observed with XMM-Newton and caught during the transition from a flaring to a quiescent state (Zurita Heras and Walter 2009). The XMM-Newton observation also revealed the presence of a soft spectral component at energies \(\lesssim \)2 keV, similar to that already detected from a number of SFXTs and interpreted in terms of X-ray emission from the supergiant wind itself or reprocessing of the NS X-rays within the wind material. The discovery of the source orbital period was reported by Goossens et al. (2013).

A 1845-024 was initially found by Ariel-5 (Seward et al. 1976). Later Ginga discovered a pulsating source GS 1843-024 with the period of \(94.8\pm 0.1\) s (Makino and GINGA Team 1988a) at the same position. Soffitta et al. (1998) identified these two sources with a hard X-ray object GRO J1849-03, which was discovered by CGRO/BATSE and demonstrated recurrent hard X-ray outbursts with a period of \({\sim }241\) days (Zhang et al. 1996). Assuming this periodicity to be orbital one Soffitta et al. (1998) classified this source as Be/XRP system using the Corbet diagram. The source spectrum is typical for X-ray pulsars, but modified by a large absorption at low energies \(N_H = (1.5 - 3) \times 10^{23}\) cm\(^{-2}\) (Koyama et al. 1990b). According to the INTEGRAL data the source spectrum above 20 keV can be approximated by a simple power-law (Doroshenko et al. 2008).

IGR J18462-0223 was discovered by INTEGRAL during a few hours-long outburst very reminiscent of the event usually recorded from the SFXTs (Grebenev and Sunyaev 2010). The source was also observed later with XMM-Newton (Bodaghee et al. 2012b), which provided an improved X-ray position within a few arcsec accuracy. The infrared counterpart is, however, not securely identified yet. The XMM-Newton observation also led to the measurement of a strong absorption in X-rays local to the source, which is reminiscent of what is usually observed in the highly absorbed HMXBs, and the identification of X-ray pulsations at a period of 997 s. This confirmed the presence of a neutron star accretor in IGR J18462-0223 as expected for an SFXT source. The NIR counterpart of IGR J18462-0223 was identified by Sguera et al. (2013) and suggested to be a supergiant star located at \(\sim \)11 kpc.

IGR J18483-0311 was discovered in 2003 by Chernyakova et al. (2003). The 18.5-day orbital period of the system was first identified by Levine and Corbet (2006) using RXTE archival data and later confirmed with INTEGRAL (Sguera et al. 2007). INTEGRAL data also showed that IGR J18483-0311 sporadically displays a few days-long X-ray active states (\(\sim \)3 days), during which fast flares with typical timescales of a few hours can be observed (Krimm et al. 2011; Romano et al. 2010b; Ducci et al. 2013a). Pulsations with a period of \(\sim \)21 s were first reported by Sguera et al. (2007). Giunta et al. (2009) discussed the possible detection of pulsations during the low X-ray intensity states of the source. These detections of pulsations were later questioned by Ducci et al. (2013a). The supergiant companion of IGR J18483-0311 was identified by Rahoui et al. (2008).

XTE J1855-026 was discovered during RXTE scans along the Galactic plane (Corbet et al. 1999b). The source exhibited pulsations with a period of \(P_{\mathrm{spin}}\simeq 360.7\) s and also a flux modulation with a period of \(P_\mathrm{orb}\simeq 6.07\) days, which was interpreted as the orbital period in the binary system (Corbet and Mukai 2002). In the same paper other orbital parameters were determined as well: \(a_x \sin i=80.5\pm 1.4\) lt-s, \(\omega =226\pm 15\) deg, \(e = 0.04\pm 0.02\). An optical counterpart of XTE J1855-026 was identified as a B0 Iaep luminous supergiant star (Verrecchia et al. 2002b; Negueruela et al. 2008a). The source spectrum has a typical form for X-ray pulsars (White et al. 1983) modified by a significant photo-absorption \(N_H \simeq (4-15) \times 10^{22}\) cm\(^{-2}\) (Corbet et al. 1999b; Romano et al. 2008a).

XTE J1858+034 is a hard X-ray transient pulsar discovered by RXTE/ASM in February 1998 (Remillard et al. 1998). The pulse period was measured with using of RXTE/PCA data to be \(221.0\pm 0.5\) s (Takeshima et al. 1998). The transient behaviour, hard X-ray spectrum and pulsations suggest the Be/XRP nature of the source (Takeshima et al. 1998). An orbital period value was estimated to be \({\sim }380\) days (Doroshenko et al. 2008). The hard X-ray spectrum obtained by the INTEGRAL observatory can be well described by a power law model with the high-energy cutoff and photo-absorption at low energies: photon index \(1.26\pm 0.08\), \(E_{\mathrm{cut}} = 26.7\pm 0.7\) keV, \(E_{\mathrm{fold}} = 6.6\pm 0.3\) keV, \(N_H=(9.0\pm 1.3) \times 10^{22}\) cm\(^{-2}\) (Doroshenko et al. 2008).

4U 1901+03 was detected by the All Sky Monitor of the RXTE observatory in January 2003 (Galloway et al. 2003). It was only a second appearance of this source on the X-ray sky after its discovery with the UHURU observatory (Forman et al. 1976). The follow-up observations, performed with the PCA/RXTE spectrometer, allowed to discover a coherent signal with the period \(P_{\mathrm{spin}}\simeq 2.763\) s in the source light curve. This discovery was confirmed soon with the INTEGRAL observatory, which observed this region of the sky (Molkov et al. 2003a). Moreover, these observations allowed to obtain for the first time a source broadband spectrum and demonstrate that it can be well approximated by a power law model with a photon index \(\varGamma \sim 1.9\) and a high-energy cutoff (\(E_{\mathrm{cut}}\simeq 12\) and \(E_{\mathrm{fold}}\simeq 13.5\) keV) that is typical for X-ray pulsars. Using data of the RXTE observatory (Galloway et al. 2005) determined orbital parameters of the system and showed that it has a very small eccentricity (\(e\simeq 0.036\)) and moderate orbital period \(P_\mathrm{orb}\simeq 22.58\) days. The outburst has lasted for about 5 months. There are not firmly established optical counterpart of the source, nor consolidated estimates of its distance. There are only tentative suggestions that the neutron star in 4U 1901\(+\)03 accretes from the wind of a main-sequence OB star (Galloway et al. 2005, but see also the association of 4U1901\(+\)03 with an early type giant star B0III by Jones et al. 1974).

4U 1907+097 is a persistent sgHMXB with a pulsar (437.5 s spin) orbiting an O8-9 Ia supergiant (located at 2–6 kpc) in 8.37 days with an eccentricity of 0.28 (Makishima et al. 1984; in’t Zand et al. 1998b; Cox et al. 2005; Nespoli et al. 2008). Its X-ray emission is highly variable and feature cyclotron absorption features (Mihara et al. 1995; Cusumano et al. 1998; Rivers et al. 2010; Fürst et al. 2011a; Hemphill et al. 2013). The source spends \({\sim }60~\%\) of the time in X-ray off-states that can last from minutes to hours (in’t Zand et al. 1998b; Roberts et al. 2001; Rivers et al. 2010; Şahiner et al. 2012). Pulsations are detected during the off-states (Roberts et al. 2001; Doroshenko et al. 2012a). Limited random-walk spin period variations have been observed (Şahiner et al. 2012). The X-ray absorption is modulated by the orbit (Şahiner et al. 2012, but remains \({<}10^{23}\) cm\(^{-2}\)) and could be modelled with an accretion stream trailing the neutron star (Kostka and Leahy 2010). 4U 1907+097 is a runaway system accompanied by a bow shock (Gvaramadze et al. 2011).

4U 1909+07 is a persistent X-ray pulsar discovered by the UHURU observatory (Forman et al. 1978) (also known as X 1908+075). An orbital periodicity of 4.4 days has been found in the RXTE/ASM data (Wen et al. 2000). Morel and Grosdidier (2005) reported a near-infrared identification of the counterpart consistent with a late O-type supergiant star lying at a distance of \({\sim }7\) kpc. Using RXTE/PCA data Levine et al. (2004) found the pulse period of the neutron star of \({\sim }605\) s and determined the binary orbit parameters \(P_{\mathrm{orb}}=4.4007\pm 0.0009\) days, \(e=0.021\pm 0.039\), \(a_x \sin i=47.83\pm 0.94\) lt-s, \(f(M)=6.07\pm 0.35~M_{\mathrm{sun}}\). A very strong stellar wind in the system leads to the substantial photo-absorption in the energy spectrum of X 1908+075, which consists of a power law continuum modified by a turnover at high energies. The orbital phase resolved spectroscopy reveals an increase of the photo-absorption by a factor of 3 or more reaching values of \(N_H \sim \hbox {few} \times 10^{23}\) cm\(^{-2}\) around orbital phase 0 (Levine et al. 2004). Possible detection of the cyclotron scattering feature at 44 keV was reported by Jaisawal et al. (2013) based on the Suzaku data. 4U 1909+07 is one of the few sources for which a superorbital modulation has been detected (the period of the modulation is 15.18 days; Corbet and Krimm 2013).

IGR J19140+0951 is a persistent sgHMXB featuring a 13.55 days orbital period. The counterpart is a B0.5 supergiant located at 2–5 kpc (Hannikainen et al. 2007). Its accreting pulsar X-ray spectrum features absorption (\(10^{23-24}\) cm\(^{-2}\)) modulated by the orbital period and a variable soft X-ray excess (Prat et al. 2008).

IGR J19173+0747 was discovered by the INTEGRAL observatory during deep observations of the Sagittarius arm region (Pavan et al. 2011). Follow-up observations with the XRT/Swift telescope allowed to refine the source position, which was coincident with that of the ROSAT source 1RXS J191720.6+074755, and determine its optical counterpart. Based on the overall optical spectral shape and characteristics of an early-type star Masetti et al. (2012b) classified the object IGR J19173+0747 as a candidate to the high-mass X-ray binary.

IGR J19294+1816 was discovered in 2009 with the INTEGRAL observatory (Turler et al. 2009). Indications of coherent pulsations with a period of about 12.4 s were found with Swift/XRT data (Rodriguez et al. 2009). Corbet and Krimm (2009) have found an orbital modulation of the hard X-ray flux with a period of 117 days. The relation between orbital and pulsation periods, as well as transient nature, leads to the identification of this source as a Be binary system with the X-ray pulsar. The source broadband spectrum could be well fitted by a cut off power law with photo-absorption: photon index \(0.4\pm 0.3\), \(E_{\mathrm{cut}} = 8.0^{+1.2}_{1.0}\) keV, \(N_H=(3.1\pm 0.7) \times 10^{22}\) cm\(^{-2}\) (Bozzo et al. 2011a).

XTE J1946+274 is the X-ray pulsar (\(P_{\mathrm{spin}}=15.83\) s) discovered simultaneously with the RXTE observatory and BATSE instrument in 1998 (Smith and Takeshima 1998). A strong outburst activity of the source in 1998–2001 allowed Wilson et al. (2003) to measure the orbital period of the system \(P_{\mathrm{orb}}=169.2\) days and its eccentricity \(e=0.33\). Such long orbital periods in a combination with a relatively high eccentricity are typical for Be/X-ray binaries. In the case of XTE J1946+274, its optical counterpart has a spectral class B0-1V-IVe and is located at a distance of 8–10 kpc (Verrecchia et al. 2002a). Based on the RXTE data Heindl et al. (2001) found a cyclotron resonance scattering feature in the source hard X-ray spectrum near 36 keV. Such an energy corresponds to a magnetic field strength of \({\simeq }3.1\times 10^{12}\) G.

KS 1947+300 is a transient X-ray pulsar, which was discovered in June 1989 by the TTM telescope aboard the KVANT module of the Mir space station (Borozdin et al. 1990). Later the BATSE monitor of the Compton-GRO observatory revealed the X-ray pulsar GRO J1948+32 with a period of 18.7 s in the same region of the sky (Chakrabarty et al. 1995). Subsequently, KS 1947+300 and GRO J1948+32 were found to be the same object (Swank and Morgan 2000). Based on the association of the optical counterpart with a B0Ve star the distance to the source was estimated as \({\sim }10\) kpc (Negueruela et al. 2003). Later, using INTEGRAL and RXTE data a similar value for the distance to the source (\({\sim }9.5\) kpc) was derived from the spin-up rate of the neutron star (Tsygankov and Lutovinov 2005b). Measurements of the orbital Doppler shift of the pulse period allowed Galloway et al. (2004) to determine the orbital parameters of the binary system: the orbital period \(P_{\mathrm{orb}}=40.415\pm 0.010\) days, the projected semimajor axis of the relativistic object \(a_{x}\sin i=137\pm 3\) light seconds and the eccentricity \(e=0.033\pm 0.013\). The spectrum of KS 1947+300 in the \(3{-}100\) keV energy range can be described by a power law with a high-energy cutoff. Spectral parameters are slightly dependent on the source luminosity and in average consistent with a photon index of \(\varGamma \sim 1.1\), \(E_{\mathrm{cut}}\sim 10\) keV and \(E_{\mathrm{fold}}\sim 25\) keV (Tsygankov and Lutovinov 2005b). According to the NuSTAR observations an emission continuum is modified by the pulse phase dependent cyclotron scattering feature at \({\sim }12.5\) keV Fürst et al. (2014a).

SWIFT J2000.6+3210 was recently discovered by the Swift/BAT telescope (Tueller et al. 2005) and optically identified with an early BV or mid BIII star (Halpern 2006; Burenin et al. 2006; Masetti et al. 2008). During one of two Suzaku observations a period of 1056 s was found and interpreted as the spin period of the neutron star (Morris et al. 2009). Spectral analysis of these data revealed a significant photo-absorption \(N_H\simeq \times 10^{23}\) cm\(^{-2}\) (Morris et al. 2009).

EXO 2030+375 is a transient accreting X-ray pulsar with a spin period of \({\sim }42\) s discovered with the EXOSAT observatory during a giant outburst in 1985 (Parmar et al. 1985). The optical counterpart in the binary system is a B0Ve star (Motch and Janot-Pacheco 1987; Coe et al. 1988), and the distance to the system is estimated as \({\sim }7.1\) kpc (Wilson et al. 2002). Orbital parameters of the binary system were derived using BATSE data (Stollberg et al. 1999): the orbital period \(P_{\mathrm{orb}}=46.016\pm 0.003\) days, \(e=0.36\pm 0.02\), \(a_x\sin i=261\pm 14\) lt-s. The energy spectrum of the source is typical for X-ray pulsars and can be fitted by a power-law model with the high-energy cutoff and iron line. Some authors reported about a tentative detection of the cyclotron absorption feature at \({\sim }36\) keV (Reig and Coe 1999), and \({\sim }11\) keV (Wilson et al. 2008) using RXTE data and at \({\sim }63\) keV using INTEGRAL data (Klochkov et al. 2008). However the existence of this feature in the source spectrum is still not proven reliably.

SAX J2103.5+4545 is a member of a high-mass Be binary system with a moderate eccentricity (\(e\simeq 0.4\)) and one of the shortest orbital period \(P_{\mathrm{orb}}\simeq 12.68\) days known to date among such binaries (Baykal et al. 2000). The source was discovered as a X-ray pulsar with the period \( P_{\mathrm{spin}}=358.6\) s based on the data of the BeppoSAX observatory (Hulleman et al. 1998). A subsequent monitoring of the pulse period revealed its strong evolution and periods of a drastic acceleration of the neutron star rotation (Sidoli et al. 2005a; Baykal et al. 2007). The accurate X-ray coordinates of the source, obtained with the XMM-Newton observatory, allowed to determine unambiguously its optical counterpart, which turned out an O-B star with strong emission lines (Filippova et al. 2004). The spectral class of the optical star was determined as B0Ve (Reig 2011). A distance to the source is estimated as \({\simeq }4.5{-}6.9\) kpc (Baykal et al. 2007). The broadband spectrum of SAX J2103.5+4545, obtained with data of RXTE and INTEGRAL observatories, is typical for X-ray pulsars and can be described by a power law with high-energy cutoff (see, e.g. Baykal et al. 2002; Lutovinov et al. 2003c; Filippova et al. 2004; Ducci et al. 2008).

IGR J21343+4738 was discovered during deep observations at the INTEGRAL observatory (Krivonos et al. 2007; Bird et al. 2007). An optical companion is a \(V = 14.1\) B1IVe shell star located at a distance of \(\sim \)8.5 kpc (Reig and Zezas 2014a). X-ray pulsations with the period of \({\simeq }320\) s were discovered at the XMM-Newton observatory (Reig and Zezas 2014b).

4U 2206+543 appeared for the first time in the UHURU catalogue (Giacconi et al. 1972). The optical counterpart in the system is a peculiar O9.5V star with a high He abundance at a distance of \({\sim }2.6\) kpc (Blay et al. 2006). A possible orbital modulation with a period of \({\simeq }9.57\) days was found in the RXTE/ASM data (Corbet and Peele 2001). Pulsations at a period of \(5559\pm 3\) s were discovered using observations of RXTE/PCA (Reig et al. 2009). Some models predict the system 4U 2206+543 to harbour a magnetar (see, e.g. Finger et al. 2010). In addition to the spectral model typical for X-ray pulsars (power law with high-energy cutoff), some evidence of a cyclotron resonance scattering feature at energies \({\sim }30\) and \({\sim }60\) keV were presented using RXTE, BeppoSAX (Torrejón et al. 2004) and INTEGRAL (Blay et al. 2005; Wang 2009) data. However, later an existence of such features in the source spectrum was not confirmed (Wang 2013).

IGR J22534+6243 was discovered as a faint hard X-ray source on the Galactic plane map averaging about 9 years of INTEGRAL observations (Krivonos et al. 2012). Based on Chandra and Swift archival data, Halpern (2012a) found pulsations of the X-ray emission with a period \(P_{\mathrm{spin}}\simeq 46.67\) s. The broad-band spectrum of IGR J22534+6243 obtained with Chandra, Swift and INTEGRAL observatories can be well described by a power law model with a cutoff energy of \(25{-}30\) keV, slightly higher than usually observed for X-ray pulsars (Lutovinov et al. 2013a). The proposed optical counterpart 2MASS J22535512+6243368 was observed later by Masetti et al. (2012a) and Lutovinov et al. (2013a), who revealed an optical spectrum typical for an early type star with superimposed \(H\alpha \), \(H\beta \) and HeI emissions at redshift zero. Based on these measurements it was concluded that IGR J22534+6243 is a X-ray pulsar in a Be high-mass X-ray binary system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, R., Lutovinov, A.A., Bozzo, E. et al. High-mass X-ray binaries in the Milky Way. Astron Astrophys Rev 23, 2 (2015). https://doi.org/10.1007/s00159-015-0082-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-015-0082-6

Keywords

Navigation