Skip to main content
Log in

Evolution of mesoscopic granular clusters in comminution systems: a structural mechanics model of grain breakage and force chain buckling

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A major scientific challenge in establishing a micromechanics theory for complex materials is the characterisation and modelling of emergent mesoscopic phenomena. This study demonstrates the key elements of a structural mechanics approach to the modelling of mesoscopic dissipative phenomena in comminution systems where grain breakage and force chain buckling coexist. Given the many degrees of freedom in these systems, there are multitude of possible configurations and configurational transitions accessible even for a small particle cluster (e.g. a particle and its immediate neighbours). Here, we develop a model of the evolution of a 6-particle cluster undergoing breakage and force chain buckling, in sequence. The analysis lays bare the intricate connections between the contact topology, the relative kinematics arising from the interactions of particles at the bonded versus non-bonded contacts, and the collective dynamics of these interactions as the cluster is monotonically compressed under confinement. The stress-displacement response profiles at the cluster scale exhibit qualitatively similar properties to those seen in macroscopic assemblies under confined compression. A parametric analysis is undertaken to explore the effects of grain-scale resistances to breakage and buckling with respect to the overall force-displacement behaviour of the granular cluster. The study casts light on open problems for future research into the micromechanics of emergent cluster behaviour germane to comminution systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuhn M.: Heterogeneity and patterning in the quasi-static behavior of granular materials. Granul. Matter 4(4), 155 (2003)

    Article  MATH  Google Scholar 

  2. Antony S.: Link between single-particle properties and macroscopic properties in particulate assemblies: role of structures within structures. Philos. Trans R. Soc. A Math. Phys. Eng. Sci. 365(1861), 2879 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ord A., Hobbs B.: Fracture pattern formation in frictional, cohesive, granular material. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1910), 95 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ben-Nun O., Einav I.: The role of self-organization during confined comminution of granular materials. Philos. Trans R. Soc. A Math. Phys. Eng. Sci. 368(1910), 231 (2010)

    Article  ADS  Google Scholar 

  5. Peters J., Walizer L.: Patterned nonaffine motion in granular media. J. Eng. Mech. 139(10), 1479 (2013). doi:10.1061/(ASCE)EM.1943-7889.0000556

    Article  Google Scholar 

  6. Bourrier F., Nicot F., Darve F.: Evolution of the micromechanical properties of impacted granular materials. Comptes Rendus Méc. 338(10-11), 639 (2010)

    Article  ADS  MATH  Google Scholar 

  7. Nicot F., Darve F.: Diffuse and localized failure modes: two competing mechanisms. Int. J. Numer. Anal. Methods Geomech. 35(5), 586 (2011)

    Article  MATH  Google Scholar 

  8. Burnley, P.: The importance of stress percolation patterns in rocks and other polycrystalline materials. Nat. Commun. 4(2117), 1–6 (2013)

    Google Scholar 

  9. Alaei E., Mahboubi A.: A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon. Granul. Matter 14(6), 707 (2012)

    Article  Google Scholar 

  10. Radjai F., Wolf D., Jean M., Moreau J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61 (1998)

    Article  ADS  Google Scholar 

  11. Majmudar T., Behringer R.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079 (2005)

    Article  ADS  Google Scholar 

  12. Padbidri J., Hansen C., Mesarovic S., Muhunthan B.: Length scale for transmission of rotations in dense granular materials. J. Appl. Mech. 79(3), 031011 (2012)

    Article  ADS  Google Scholar 

  13. Cil M., Alshibli K.A.: 3D assessment of fracture of sand particles using discrete element method. Geotech. Lett. 2, 161 (2012)

    Article  Google Scholar 

  14. Paavilainen J., Tuhkuri J.: Pressure distributions and force chains during simulated ice rubbling against sloped structures. Cold Reg. Sci. Technol. 85, 157 (2013)

    Article  Google Scholar 

  15. De Wolf, T., Holvoet, T.: Engineering Self-Organising Systems. In: Brueckner, S. Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) Lecture Notes in Computer Science, vol. 3464, pp. 1–15. Springer, Berlin (2005)

  16. Buchholtz V., Freund J., Pöschel T.: Molecular dynamics of comminution in ball mills. Eur. Phys. J. B 16(1), 169 (2000)

    Article  ADS  Google Scholar 

  17. Davies T., McSaveney M.: The role of rock fragmentation in the motion of large landslides. Eng. Geol. 109(1–2), 67 (2009)

    Article  Google Scholar 

  18. De~Blasio F.: Dynamical stress in force chains of granular media traveling on a bumpy terrain and the fragmentation of rock avalanches. Acta Mech. 221(3–4), 375 (2011)

    Article  MATH  Google Scholar 

  19. Ben-Nun O., Einav I., Tordesillas A.: Force attractor in confined comminution of granular materials. Phys. Rev. Lett. 104(10), 108001 (2010)

    Article  ADS  Google Scholar 

  20. Russell A., Einav I.: Energy dissipation from particulate systems undergoing a single particle crushing event. Granul. Matter 15, 299 (2013)

    Article  Google Scholar 

  21. Majmudar T.S., Behringer R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(4), 1079 (2005)

    Article  ADS  Google Scholar 

  22. Tordesillas A., Walker D., Froyland G., Zhang J., Behringer R.: Transition dynamics and magic-number-like behavior of frictional granular clusters. Phys. Rev. E 86(1), 011306 (2012)

    Article  ADS  Google Scholar 

  23. Gonzalez J., Lambros J.: Crack path selection in microstructurally tailored inhomogeneous polymers. Exp. Mech. 53(4), 619 (2013). doi:10.1007/s11340-012-9668-3

    Article  Google Scholar 

  24. Tordesillas A., Muthuswamy M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57(4), 706 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Walker D., Tordesillas A., Einav I., Small M.: Complex networks in confined comminution. Phys. Rev. E 84(2), 023101 (2011)

    Article  Google Scholar 

  26. Valanis K.: A gradient theory of internal variables. Acta Mech. 116(1–4), 1 (1996)

    MATH  MathSciNet  Google Scholar 

  27. Rice J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433 (1971)

    Article  ADS  MATH  Google Scholar 

  28. Ferretti, M., Madeo, A., dellIsola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift fr angewandte Mathematik und Physik, pp. 1–26, ISSN:0044-2275, Springer Basel (2013)

  29. Alibert J.J., Seppecher P., DellIsola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Seppecher P., Alibert J.J., Isola F.D.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319(1), 012018 (2011)

    Article  ADS  Google Scholar 

  31. Hunt G., Hammond J.: Mechanics of shear banding in a regularized two-dimensional model of a granular medium. Philos. Mag. 92(28–30), 3483 (2012)

    Article  ADS  Google Scholar 

  32. Tordesillas A., Lin Q., Zhang J., Behringer R., Shi J.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59(2), 265 (2011)

    Article  ADS  MATH  Google Scholar 

  33. Hunt G., Tordesillas A., Green S., Shi J.: Force-chain buckling in granular media: a structural mechanics perspective. Philos. Trans. A Math. Phys. Eng. Sci. 368(1910), 249 (2010)

    Article  ADS  MATH  Google Scholar 

  34. Tordesillas, A., Carey, D., Croll, A.B., Shi, J., Gurmessa, B.: Micromechanics of elastic buckling of a colloidal polymer layer on a soft substrate: experiment and theory. Granul. Matter (2014, in press)

  35. Koiter, W.T.: On the Stability of Elastic Equilibrium. PhD Thesis, Technological University of Delft, Holland (1945)

  36. Oda M., Kazama H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(4), 465 (1998)

    Article  Google Scholar 

  37. Thornton, C., Zhang, L.:A numerical examination of shear banding and simple shear non-coaxial flow rules. Philos. Mag. 86(21), 3425–3452 (2006)

    Google Scholar 

  38. Einav I.: Breakage mechanics-Part II: modelling granular materials. J. Mech. Phys. Solids 55(6), 1298 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Tordesillas A., Muthuswamy M.: A thermomicromechanical approach to multiscale continuum modelling of dense granular materials. Acta Geotech. 3(3), 225 (2008)

    Article  Google Scholar 

  40. Tordesillas A., Shi J., Tshaikiwsky T.: Stress dilatancy and force chain evolution. Int. J. Numer. Anal. Methods Geomech. 35(2), 264 (2011)

    Article  MATH  Google Scholar 

  41. Tordesillas A., Shi J., Muhlhaus H.B.: Noncoaxiality and force chain evolution. Int. J. Eng. Sci. 47(11-12), 1386 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Miskin M., Jaeger H.: Adapting granular materials through artificial evolution. Nat. Mater. 12(4), 326 (2013)

    Article  ADS  Google Scholar 

  43. Cleary P.: Modelling comminution devices using DEM. Int. J. Numer. Anal. Methods Geomech. 25(1), 83 (2001)

    Article  MATH  Google Scholar 

  44. Tordesillas A., Walker D., Lin Q.: Force cycles and force chains. Phys. Rev. E 81(1), 011302 (2010)

    Article  ADS  Google Scholar 

  45. Cheng Y., Bolton M., Nakata Y.: Crushing and plastic deformation of soils simulated using DEM. Geotechnique 54(2), 131 (2004)

    Article  Google Scholar 

  46. Liu E.: Breakage and deformation mechanisms of crushable granular materials. Comput. Geotech. 37(5), 723 (2010)

    Article  Google Scholar 

  47. Cole D., Peters J.: A physically based approach to granular media mechanics: grain-scale experiments, initial results and implications to numerical modeling. Granul. Matter 9, 309 (2007)

    Article  Google Scholar 

  48. Walker D., Tordesillas A.: Topological evolution in dense granular materials: a complex networks perspective. Int. J. Solids Struct. 47(5), 624 (2010)

    Article  MATH  Google Scholar 

  49. Tordesillas A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philos. Mag. 87(32), 4987 (2007)

    Article  ADS  Google Scholar 

  50. Zhang J., Majmudar T., Tordesillas A., Behringer R.: Statistical properties of a 2D granular material subjected to cyclic shear. Granul. Matter 12(2), 159 (2010)

    Article  Google Scholar 

  51. Li Q.: Energy correlations between a damaged macroscopic continuum and its sub-scale. Int. J. Solids Struct. 37(33), 4539 (2000)

    Article  MATH  Google Scholar 

  52. Gdoutos E.: Fracture mechanics: an introduction, 2nd edn. Springer, The Netherlands (2005)

    Google Scholar 

  53. Topin V., Delenne J.Y., Radjai F., Brendel L., Mabille F.: Strength and failure of cemented granular matter. Eur. Phys. J. E 23(4), 413 (2007)

    Article  Google Scholar 

  54. Misailidis N., Campbell G.: Interpreting crush response profiles from the single kernel characterization system. J. Cereal Sci. 57(2), 222 (2013)

    Article  Google Scholar 

  55. Nicot F., Hadda N., Bourrier F., Sibille L., Wan R., Darve F.: Inertia effects as a possible missing link between micro and macro second-order work in granular media. Int. J. Solids Struct. 49(10), 1252 (2012)

    Article  Google Scholar 

  56. Nicot F., Daouadji A., Laouafa F., Darve F.: Second-order work, kinetic energy and diffuse failure in granular materials. Granul. Matter 13(1), 19 (2011)

    Article  Google Scholar 

  57. Tordesillas, A., Pucilowski, S., Walker, D.M., Peters, J., Walizer, L.: Micromechanics of vortices in granular media:connection to shear bands and implications for continuum modelling of failure in geomaterials. Int. J. Numer. Anal. Methods Geomech. (2014, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette Tordesillas.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tordesillas, A., Liu, E. Evolution of mesoscopic granular clusters in comminution systems: a structural mechanics model of grain breakage and force chain buckling. Continuum Mech. Thermodyn. 27, 105–132 (2015). https://doi.org/10.1007/s00161-014-0336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0336-y

Keywords

Navigation