Skip to main content
Log in

A comparative study of sound generation by laminar, combusting and non-combusting jet flows

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Sound production by two-dimensional, laminar jet flows with and without combustion is studied numerically and theoretically. The compressible Navier–Stokes, energy and progress variable equations are solved by resolving both the near field and the acoustics. The combusting jet flows are compared to non-combusting jets of the same jet Mach number, with the non-combusting, non-isothermal jets having the same steady temperature difference as the combusting jets. This infers that the magnitude of entropic and density disturbances is similar in some of the combusting and non-combusting cases. The flows are perturbed by a sinusoidal inlet velocity fluctuation at different Strouhal numbers. The computational domain is resolved to the far field in all cases, allowing direct examination of the sound radiated and its sources. Lighthill’s acoustic analogy is then solved numerically using Green’s functions. The radiated sound calculated using Lighthill’s equation is in good agreement with that from the simulations for all cases, validating the numerical solution of Lighthill’s equation. The contribution of the source terms in Dowling’s reformulation of Lighthill’s equation is then investigated. It is shown that the source term relating to changes in the momentum of density inhomogeneities is the dominant source term for all non-reacting, non-isothermal cases. Further, this source term has similar magnitude in the combusting cases and is one of the several source terms that have similar magnitude to the source term involving fluctuations in the heat release rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baum, M.: Etude de l’allumage et de la structure des flammes turbulentes. Ph.D. thesis, Ecole Centrale Paris (1994)

  2. Bodony D.J., Lele S.K.: On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids 17, 1–20 (2005)

    Google Scholar 

  3. Bourlioux A., Cuenot B., Poinsot T.: Asymptotic and numerical study of the stabilization of diffusion flames by hot gas. Combust. Flame 120(1–2), 143–159 (2000)

    Article  Google Scholar 

  4. Brear M.J., Nicoud F., Talei M., Giauque A., Hawkes E.R.: Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 53–73 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bui T.P., Schröder W., Meinke M.: Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations. Comput. Fluids 37(9), 1157–1169 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Candel S.: Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29(1), 1–28 (2002)

    Article  Google Scholar 

  7. Candel S., Durox D., Ducruix S., Birbaud A.L., Noiray N., Schuller T.: Flame dynamics and combustion noise: progress and challenges. Int. J. Aeroacoust. 8(1&2), 1–56 (2009)

    Article  Google Scholar 

  8. Candel, S., Durox, D., Schuller, T.: Flame interactions as a source of noise and combustion instabilities. In: 10th AIAA/CEAS Aeroacoustics Conference, Paper number: 2004-2928, 2004-2928, pp. 1444–1454 (2004)

  9. Chiu H.H., Summerfield M.: Theory of combustion noise. Acta Astronaut. 1(7–8), 967–984 (1974)

    Article  Google Scholar 

  10. Clavin P., Siggia E.D.: Turbulent premixed flames and sound generation. Combust. Sci. Technol. 78, 147–155 (1991)

    Article  Google Scholar 

  11. Colonius T., Lele S.K.: Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40, 345–416 (2004)

    Article  Google Scholar 

  12. Colonius T., Lele S.K., Moin P.: Sound generation in a mixing layer. J. Fluid Mech. 330, 375–409 (1997)

    Article  MATH  Google Scholar 

  13. Corjon, A., Poinsot, T.: A model to define aircraft separations due to wake vortex encounter. In: 13th AIAA Applied Aerodynamics Conference. AIAA paper 95-1776, pp. 117–124 (1995)

  14. Corjon A., Poinsot T.: Behavior of wake vortices near ground. AIAA J. 35(5), 849–855 (1997)

    Article  MATH  Google Scholar 

  15. Crighton, D.G., Dowling, A.P., Ffowcs Williams, J.E., Heckl, M., Leppington, F.G., Bartram, J.F.: Modern Methods in Analytical Acoustics Lecture Notes (1992)

  16. Cuenot, B., Bedet, B., Corjon, A.: NTMIX3D User’s Guide Manual, Preliminary Version 1.0 (1997)

  17. Doak P.E.: Analysis of internally generated sound in continuous materials: 2. A critical review of the conceptual adequacy and physical scope of existing theories of aerodynamic noise, with special reference to supersonic jet noise 1. J. Sound Vib. 25(2), 263–335 (1972)

    Article  MATH  Google Scholar 

  18. Dowling A.P.: Modern Methods in Analytical Acoustics, Chap. Thermoacoustic Sources and Instabilities, pp. 378–403. Springer, Berlin (1992)

    Google Scholar 

  19. Dowling A.P., Stow S.R.: Acoustic analysis of gas turbine combustors. J. Propuls. Power 19(5), 751–764 (2003)

    Article  Google Scholar 

  20. Duffy D.G.: Green’s Functions with Applications. Chapman & Hall/CRC, London (2001)

    Book  MATH  Google Scholar 

  21. Ffowcs Williams J.E., Hawking D.L.: Sound generated by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. A 264, 321–342 (1969)

    Article  MATH  Google Scholar 

  22. Freund J.B.: Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277–305 (2001)

    Article  MATH  Google Scholar 

  23. Goldstein M.E.: Aeroacoustics of turbulent shear flows. Ann. Rev. Fluid Mech. 16, 263–285 (1984)

    Article  Google Scholar 

  24. Goldstein M.E.: A generalized acoustic analogy. J. Fluid Mech. 488, 315–333 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hassan H.A.: Scaling of combustion-generated noise. J. Fluid Mech. 66(3), 445–453 (1974)

    Article  MATH  Google Scholar 

  26. Hirsch C., Wäsle J., Winkler A., Sattelmayer T.: A spectral model for the sound pressure from turbulent premixed combustion. Proc. Combust. Inst. 31(1), 1435–1441 (2007)

    Article  Google Scholar 

  27. Howe M.S.: Acoustics of Fluid-Structure Interactions. Cambridge University Press, Cambridge, MA (1998)

    Book  MATH  Google Scholar 

  28. Hurle I.R., Price R.B., Sugden T.M., Thomas A.: Sound emission from open turbulent premixed flames. Proc. R. Soc. 303(1475), 409–427 (1968)

    Article  Google Scholar 

  29. Ihme M., Pitsch H.: On the generation of direct combustion noise in turbulent non-premixed flames. Int. J. Aeroacoust. 11(1), 25–78 (2012)

    Article  Google Scholar 

  30. Ihme M., Pitsch H., Bodony D.J.: Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32(1), 1545–1553 (2009)

    Article  Google Scholar 

  31. Jiang X., Avital E.J., Luo K.H.: Direct computation and aeroacoustic modelling of a subsonic axisymmetric jet. J. Sound Vib. 270, 528–538 (2004)

    Article  Google Scholar 

  32. Karimi N., Brear M.J., Jin S.H., Monty J.P.: Linear and non-linear forced response of a conical, ducted, laminar premixed flame. Combust. Flame 156(11), 2201–2212 (2009)

    Article  Google Scholar 

  33. Kidin, N., Librovich, V., Macquisten, M., Roberts, J., Vuillermoz, M.: Possible acoustic source in turbulent combustion. Dyn. React. Syst. Part 1 Flames 336–348 (1988)

  34. Kidin, N., Librovich, V., Roberts, J., Vuillermoz, M.: On sound sources in turbulent combustion. In: Dynamics of Flames and Reactive Systems, pp. 343–355 (1984)

  35. Lieuwen T.: Modeling premixed combustion-acoustic wave interactions: a review. J. Propuls. Power 19(5), 765–781 (2003)

    Article  Google Scholar 

  36. Lieuwen, T., Yang, V. (eds.): Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling. vol. 210, Prog. Astronaut. Aeronaut. AIAA (2006)

  37. Lighthill M.J.: On sound generation aerodynamically I. General theory. Proc. R. Soc. 211, 564–587 (1951)

    Article  MathSciNet  Google Scholar 

  38. Lilley, G.M.: On the noise from air jets, in Noise Mechanisms. AGARD. CP. 131, 13.1–13.12 (1973)

  39. Lodato G., Domingo P., Vervisch L.: Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227(10), 5105–5143 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Moore P., Slot H., Boersma B.J.: Investigation of the behavior of noise sources in heated jets. Adv. Turbul. XI, 395–397 (2007)

    Google Scholar 

  41. Morfey C.L.: Amplification of aerodynamic noise by convected flow inhomogeneities. J. Sound Vib. 31(4), 391–397 (1973)

    Article  Google Scholar 

  42. Morfey C.L., Wright M.C.M.: Extensions of Lighthill’s acoustic analogy with application to computational aeroacoustics. Proc. R. Soc. A Math. Phy. 463(2085), 2101–2127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Myers M.K.: Transport of energy by disturbances in arbitrary steady flows. J. Fluid Mech. 226, 383–400 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  44. Phillips O.M.: On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9, 1–25 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  45. Poinsot T., Veynante D.: Theoretical and Numerical Combustion 2nd edn. RT Edwards Inc., Philadelphia (2005)

    Google Scholar 

  46. Poinsot T.J., Lele S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  47. Schuller T., Durox D., Candel S.: Dynamics of and noise radiated by a perturbed impinging premixed jet flame. Combust. Flame 128(1–2), 88–110 (2002)

    Article  Google Scholar 

  48. Schuller T., Durox D., Candel S.: Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135(4), 525–537 (2003)

    Article  Google Scholar 

  49. Schwarz A., Janicka J. (eds): Combustion Noise. Springer, Berlin (2009)

    Google Scholar 

  50. Smith M.J.T.: Aircraft Noise. Cambridge University Press, Cambridge, MA (2004)

    Google Scholar 

  51. Strahle W.C.: On combustion generated noise. J. Fluid Mech. 49(2), 399–414 (1971)

    Article  MATH  Google Scholar 

  52. Strahle W.C.: Some results in combustion generated noise. J. Sound Vib. 23(1), 113–125 (1972)

    Article  Google Scholar 

  53. Strahle W.C.: Combustion noise. Prog. Energy Combust. 4, 157–176 (1978)

    Article  Google Scholar 

  54. Talei M., Brear M.J., Hawkes E.R.: Sound generation by laminar premixed flame annihilation. J. Fluid Mech. 679, 194–218 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  55. Talei M., Brear M.J., Hawkes E.R.: A parametric study of sound generation by laminar premixed flame annihilation. Combust. Flame 159(2), 757–769 (2012)

    Article  Google Scholar 

  56. Talei M., Hawkes E.R., Brear M.J.: A direct numerical simulation study of frequency and Lewis number effects on sound generation by two-dimensional forced laminar premixed flames. Proc. Combust. Inst. 34(2), 1093–1100 (2013)

    Article  Google Scholar 

  57. Torregrosa A.J., Broatch A., Martín J., Monelletta L.: Combustion noise level assessment in direct injection diesel engines by means of in-cylinder pressure components. Meas. Sci. Technol. 18, 2131–2142 (2007)

    Article  Google Scholar 

  58. Yoo C., Wang Y., Trouvé A., Im H.: Characteristic boundary conditions for direct simulations of turbulent counterflow flames. Combust. Theory Model. 9(4), 617–646 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  59. Yoo C.S., Im H.G.: Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combust. Theory Model. 11(2), 259–286 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  60. Zhao W., Frankel S.H.: Numerical simulations of sound radiated from an axisymmetric premixed reacting jet. Phys. Fluids 13, 2671–2681 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Talei.

Additional information

Communicated by Tim Colonius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talei, M., Brear, M.J. & Hawkes, E.R. A comparative study of sound generation by laminar, combusting and non-combusting jet flows. Theor. Comput. Fluid Dyn. 28, 385–408 (2014). https://doi.org/10.1007/s00162-014-0324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-014-0324-7

Keywords

Navigation