Skip to main content
Log in

Patellofemoral and tibiofemoral articular cartilage and subchondral bone health following arthroscopic partial medial meniscectomy

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To examine articular cartilage and subchondral bone changes in tibiofemoral and patellofemoral joints following partial medial meniscectomy.

Methods

For this cross-sectional study, 158 patients aged 30–55 years, without evidence of knee osteoarthritis at arthroscopic partial medial meniscectomy (APMM), and 38 controls were recruited. MRI was performed once on the operated knee for each subcohort of 3 months, 2 or 4 years post-surgery, and the randomly assigned knee of the controls. Cartilage volume, cartilage defects, and bone size were assessed using validated methods.

Results

Compared with controls, APMM patients had more prevalent cartilage defects in medial tibiofemoral (OR = 3.17, 95%CI 1.24–8.11) and patellofemoral (OR = 13.76, 95%CI 1.52–124.80) compartments, and increased medial tibial plateau bone area (B = 143.8, 95%CI 57.4–230.2). Time from APMM was positively associated with cartilage defect prevalence in medial tibiofemoral (OR = 1.02, 95%CI 1.00–1.03) and patellofemoral (OR = 1.04, 95%CI 1.01–1.07) compartments, and medial tibial plateau area (B = 2.5, 95%CI 0.8–4.3), but negatively associated with lateral tibial cartilage volume (B = −4.9, 95%CI −8.4 to −1.5). The association of APMM and time from APMM with patellar cartilage defects was independent of tibial cartilage volume.

Conclusions

Partial medial meniscectomy is associated with adverse effects on articular cartilage and subchondral bone, which are associated with subsequent osteoarthritis, in both tibiofemoral and patellofemoral compartments.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aglietti P, Buzzi R, Bassi PB, Pisaneschi A (1986) Results of arthroscopic meniscectomy. Ital J Orthop Traumatol 12(3):315–325

    PubMed  CAS  Google Scholar 

  2. Amin S, Baker K, Niu J, Clancy M, Goggins J, Guermazi A, Grigoryan M, Hunter DJ, Felson DT (2009) Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis. Arthritis Rheum 60(1):189–198

    Article  PubMed  Google Scholar 

  3. Appleyard RC, Ghosh P, Swain MV (1999) Biomechanical, histological and immunohistological studies of patellar cartilage in an ovine model of osteoarthritis induced by lateral meniscectomy. Osteoarthr Cartil 7(3):281–294

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein J (2000) Meniscal tears of the knee: diagnosis and individualized treatment. Phys Sportsmed 28(3):83–90

    PubMed  CAS  Google Scholar 

  5. Bolano LE, Grana WA (1993) Isolated arthroscopic partial meniscectomy. Functional radiographic evaluation at five years. Am J Sports Med 21(3):432–437

    Google Scholar 

  6. Bourne RB, Finlay JB, Papadopoulos P, Andreae P (1984) The effect of medial meniscectomy on strain distribution in the proximal part of the tibia. J Bone Joint Surg Am 66(9):1431–1437

    PubMed  CAS  Google Scholar 

  7. Burr DB (1998) The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol 10(3):256–262

    Article  PubMed  CAS  Google Scholar 

  8. Chatain F, Adeleine P, Chambat P, Neyret P (2003) A comparative study of medial versus lateral arthroscopic partial meniscectomy on stable knees: 10-year minimum follow-up. Arthroscopy 19(8):842–849

    Article  PubMed  CAS  Google Scholar 

  9. Cicuttini FM, Forbes A, Yuanyuan W, Rush G, Stuckey SL (2002) Rate of knee cartilage loss after partial meniscectomy. J Rheumatol 29(9):1954–1956

    PubMed  Google Scholar 

  10. Conaghan PG, Felson D, Gold G, Lohmander S, Totterman S, Altman R (2006) MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthr Cartil 14(Suppl A):A87–A94

    Google Scholar 

  11. Ding C, Cicuttini F, Jones G (2007) Tibial subchondral bone size and knee cartilage defects: relevance to knee osteoarthritis. Osteoarthr Cartil 15(5):479–486

    Article  PubMed  CAS  Google Scholar 

  12. Ding C, Cicuttini F, Scott F, Boon C, Jones G (2005) Association of prevalent and incident knee cartilage defects with loss of tibial and patellar cartilage: a longitudinal study. Arthritis Rheum 52(12):3918–3927

    Article  PubMed  Google Scholar 

  13. Ding C, Cicuttini F, Scott F, Cooley H, Jones G (2005) Knee structural alteration and BMI: a cross-sectional study. Obes Res 13(2):350–361

    Article  PubMed  Google Scholar 

  14. Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G (2005) Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthr Cartil 13(3):198–205

    Article  PubMed  Google Scholar 

  15. Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C (2006) Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthr Cartil 14(Suppl A):A46–A75

    Google Scholar 

  16. Elahi S, Cahue S, Felson DT, Engelman L, Sharma L (2000) The association between varus-valgus alignment and patellofemoral osteoarthritis. Arthritis Rheum 43(8):1874–1880

    Article  PubMed  CAS  Google Scholar 

  17. Englund M, Lohmander LS (2005) Patellofemoral osteoarthritis coexistent with tibiofemoral osteoarthritis in a meniscectomy population. Ann Rheum Dis 64(12):1721–1726

    Article  PubMed  CAS  Google Scholar 

  18. Englund M, Roos EM, Lohmander LS (2003) Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum 48(8):2178–2187

    Article  PubMed  CAS  Google Scholar 

  19. Ericsson YB, Roos EM, Dahlberg L (2006) Muscle strength, functional performance, and self-reported outcomes four years after arthroscopic partial meniscectomy in middle-aged patients. Arthritis Rheum 55(6):946–952

    Article  PubMed  Google Scholar 

  20. Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18(4):434–447

    Article  PubMed  Google Scholar 

  21. Herrlin S, Hallander M, Wange P, Weidenhielm L, Werner S (2007) Arthroscopic or conservative treatment of degenerative medial meniscal tears: a prospective randomised trial. Knee Surg Sports Traumatol Arthrosc 15(4):393–401

    Article  PubMed  Google Scholar 

  22. Jackson BD, Teichtahl AJ, Morris ME, Wluka AE, Davis SR, Cicuttini FM (2004) The effect of the knee adduction moment on tibial cartilage volume and bone size in healthy women. Rheumatology (Oxford) 43(3):311–314

    Article  CAS  Google Scholar 

  23. Jones G, Ding C, Scott F, Glisson M, Cicuttini F (2004) Early radiographic osteoarthritis is associated with substantial changes in cartilage volume and tibial bone surface area in both males and females. Osteoarthr Cartil 12(2):169–174

    Article  PubMed  CAS  Google Scholar 

  24. Jones G, Glisson M, Hynes K, Cicuttini F (2000) Sex and site differences in cartilage development: a possible explanation for variations in knee osteoarthritis in later life. Arthritis Rheum 43(11):2543–2549

    Article  PubMed  CAS  Google Scholar 

  25. Jones RE, Smith EC, Reisch JS (1978) Effects of medial meniscectomy in patients older than forty years. J Bone Joint Surg Am 60(6):783–786

    PubMed  CAS  Google Scholar 

  26. Lee SJ, Aadalen KJ, Malaviya P, Lorenz EP, Hayden JK, Farr J, Kang RW, Cole BJ (2006) Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 34(8):1334–1344

    Article  PubMed  Google Scholar 

  27. Maletius W, Messner K (1996) The effect of partial meniscectomy on the long-term prognosis of knees with localized, severe chondral damage. A twelve- to fifteen-year followup. Am J Sports Med 24(3):258–262

    Google Scholar 

  28. Menetrey J, Unno-Veith F, Madry H, Van Breuseghem I (2010) Epidemiology and imaging of the subchondral bone in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc 18(4):463–471

    Article  PubMed  Google Scholar 

  29. Mills PM, Wang Y, Cicuttini FM, Stoffel K, Stachowiak GW, Podsiadlo P, Lloyd DG (2008) Tibio-femoral cartilage defects 3–5 years following arthroscopic partial medial meniscectomy. Osteoarthr Cartil 16(12):1526–1531

    Article  PubMed  CAS  Google Scholar 

  30. Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61(7):617–622

    Article  PubMed  CAS  Google Scholar 

  31. Petersen MM, Olsen C, Lauritzen JB, Lund B, Hede A (1996) Late changes in bone mineral density of the proximal tibia following total or partial medial meniscectomy. A randomized study. J Orthop Res 14(1):16–21

    Google Scholar 

  32. Radin EL, Burr DB, Caterson B, Fyhrie D, Brown TD, Boyd RD (1991) Mechanical determinants of osteoarthrosis. Semin Arthritis Rheum 21(3 Suppl 2):12–21

    Google Scholar 

  33. Radin EL, Paul IL, Rose RM (1972) Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet 1(7749):519–522

    Article  PubMed  CAS  Google Scholar 

  34. Rangger C, Klestil T, Gloetzer W, Kemmler G, Benedetto KP (1995) Osteoarthritis after arthroscopic partial meniscectomy. Am J Sports Med 23(2):240–244

    Article  PubMed  CAS  Google Scholar 

  35. Rockborn P, Gillquist J (1996) Long-term results after arthroscopic meniscectomy. The role of preexisting cartilage fibrillation in a 13 year follow-up of 60 patients. Int J Sports Med 17(8):608–613

    Google Scholar 

  36. Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41(4):687–693

    Article  PubMed  CAS  Google Scholar 

  37. Sturnieks DL, Besier TF, Hamer PW, Ackland TR, Mills PM, Stachowiak GW, Podsiadlo P, Lloyd DG (2008) Knee strength and knee adduction moments following arthroscopic partial meniscectomy. Med Sci Sports Exerc 40(6):991–997

    Article  PubMed  Google Scholar 

  38. Sturnieks DL, Besier TF, Mills PM, Ackland TR, Maguire KF, Stachowiak GW, Podsiadlo P, Lloyd DG (2008) Knee joint biomechanics following arthroscopic partial meniscectomy. J Orthop Res 26(8):1075–1080

    Article  PubMed  Google Scholar 

  39. von Lewinski G, Stukenborg-Colsman C, Ostermeier S, Hurschler C (2006) Experimental measurement of tibiofemoral contact area in a meniscectomized ovine model using a resistive pressure measuring sensor. Ann Biomed Eng 34(10):1607–1614

    Article  Google Scholar 

  40. Wang Y, Ding C, Wluka AE, Davis S, Ebeling PR, Jones G, Cicuttini FM (2006) Factors affecting progression of knee cartilage defects in normal subjects over 2 years. Rheumatology 45(1):79–84

    Article  PubMed  CAS  Google Scholar 

  41. Wang Y, Wluka AE, Cicuttini FM (2005) The determinants of change in tibial plateau bone area in osteoarthritic knees: a cohort study. Arthritis Res Ther 7(3):R687–R693

    Article  PubMed  Google Scholar 

  42. Williams RJ III, Warner KK, Petrigliano FA, Potter HG, Hatch J, Cordasco FA (2007) MRI evaluation of isolated arthroscopic partial meniscectomy patients at a minimum five-year follow-up. Hss J 3(1):35–43

    Article  PubMed  Google Scholar 

  43. Wluka AE, Davis SR, Bailey M, Stuckey SL, Cicuttini FM (2001) Users of oestrogen replacement therapy have more knee cartilage than non-users. Ann Rheum Dis 60(4):332–336

    Article  PubMed  CAS  Google Scholar 

  44. Wluka AE, Ding C, Jones G, Cicuttini FM (2005) The clinical correlates of articular cartilage defects in symptomatic knee osteoarthritis: a prospective study. Rheumatology (Oxford) 44(10):1311–1316

    Article  CAS  Google Scholar 

  45. Wolski M, Stachowiak GW, Dempsey AR, Mills PM, Cicuttini FM, Wang YY, Stoffel KK, Lloyd DG, Podsiadlo P (2011) Trabecular bone texture detected by plain radiography and variance orientation transform method is different between knees with and without cartilage defects. J Orthop Res 29(8):1161–1167

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Australian National Health and Medical Research Council, Australian Research Council, Western Australian Medical Health and Research Infrastructure Fund. Dr Wang and Dr Hanna are the recipients of NHMRC Public Health (Australia) Fellowships (NHMRC 465142 and 418916, respectively). We thank the following surgeons for recruitment: Mr Keith Holt, Mr Greg Witherow, Mr Greg Janes, Mr Peter Annear, Mr Hari Goonatillake, Mr Dermot Collopy, Mr David Colvin, Mr Peter Campbell, Mr Hayden Morris, Mr Andrew Shimmin, Mr Jim Keillerup, Mr Julian Feller and Mr Adrian Trivett. We thank Dr Stephen Davis, Simone Mattfield, Iryna Bushwood and Vi Thuy for radiology.

Conflict of interest

No authors have a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Lloyd.

Additional information

Yuanyuan Wang and Alasdair R. Dempsey are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Dempsey, A.R., Lloyd, D.G. et al. Patellofemoral and tibiofemoral articular cartilage and subchondral bone health following arthroscopic partial medial meniscectomy. Knee Surg Sports Traumatol Arthrosc 20, 970–978 (2012). https://doi.org/10.1007/s00167-011-1681-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1681-z

Keywords

Navigation