Skip to main content
Log in

Does meniscal pathology alter gait knee biomechanics and strength post-ACL reconstruction?

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Individuals following anterior cruciate ligament reconstruction (ACLR) with concomitant meniscal pathology have a higher risk of developing knee osteoarthritis (OA) compared to those with isolated ACLR. Knee extensor weakness and altered dynamic knee joint biomechanics have been suggested to play a role in the development of knee OA following ACLR. This study investigated whether these factors differ in people following ACLR who have concomitant meniscal pathology compared to patients with isolated ACLR.

Methods

Thirty-three patients with isolated ACLR and 34 patients with ACLR and meniscal pathology underwent strength and gait assessment 12–24 months post-operatively. Primary measures were peak isometric knee extensor torque and knee adduction moment (peak and impulse). Secondary measures included peak knee flexion moment and knee kinematics (sagittal and transverse).

Results

There were no between-group differences in knee extensor strength [mean difference (95 % CI) 0.09 (−0.23 to 0.42) Nm/kg, n.s.], peak knee adduction moment [−0.02 (−0.54 to 0.49) Nm/(BW × HT) %, n.s.] or knee adduction moment impulse [0.01 (−0.15 to 0.17) Nm/(BW × HT) %, p = n.s.]. No between-group differences were found for any secondary measures.

Conclusions

No evidence was found to suggest that the higher prevalence of OA in patients with ACLR and meniscal pathology compared to patients with isolated ACLR is attributed to reduced knee muscle strength or altered knee joint biomechanics assessed 1–2 years post-surgery. Given that there is a higher incidence of knee OA in patients with concomitant meniscal pathology and ACLR, further investigation is needed so that population-specific rehabilitation protocols can be developed.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amin S, Luepongsak N, McGibbon CA, LaValley MP, Krebs DE, Felson DT (2004) Knee adduction moment and development of chronic knee pain in elders. Arthritis Rheum 51:371–376

    Article  PubMed  Google Scholar 

  2. Andriacchi TP, Mundermann A (2006) The role of ambulatory mechanics in the initation and progression of knee osteoarthritis. Curr Opin Rheumatol 18:514–518

    Article  PubMed  Google Scholar 

  3. Barber-Westin SD, Noyes FR, McCloskey JW (1999) Rigorous statistical reliability, validity, and responsiveness testing of the Cincinnati knee rating system in 350 subjects with uninjured, injured, or anterior cruciate ligament-reconstructed knees. Am J Sports Med 27:402–416

    CAS  PubMed  Google Scholar 

  4. Barenius B, Ponzer S, Shalabi A, Bujak R, Norlen L, Eriksson K (2014) Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial. Am J Sports Med 42:1049–1057

    Article  PubMed  Google Scholar 

  5. Bennell KL, Bowles KA, Wang Y, Cicuttini F, Davies-Tuck M, Hinman RS (2011) Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann Rheum Dis 70:1770–1774

    Article  PubMed  Google Scholar 

  6. Briggs KK, Lysholm J, Tegner Y, Rodkey WG, Kocher MS, Steadman JR (2009) The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med 37:890–897

    Article  PubMed  Google Scholar 

  7. Butler RJ, Minick KI, Ferber R, Underwood F (2009) Gait mechanics after ACL reconstruction: implications for the early onset of knee osteoarthritis. Br J Sports Med 43:366–370

    Article  CAS  PubMed  Google Scholar 

  8. Chang AH, Moisio KC, Chmiel JS, Eckstein F, Guermazi A, Prasad PV, Zhang Y, Almagor O, Belisle L, Hayes K, Sharma L (2015) External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthritis Cartilage 23:1099–1106

    Article  CAS  PubMed  Google Scholar 

  9. Chehab EF, Favre J, Erhart-Hledik JC, Andriacchi TP (2014) Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis. Osteoarthritis Cartilage 22:1833–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ciccotti MG, Kerlan RK, Perry J, Pink M (1994) An electromyographic analysis of the knee during functional activities. II. The anterior cruciate ligament-deficient and -reconstructed profiles. Am J Sports Med 22:651–658

    Article  CAS  PubMed  Google Scholar 

  11. Dejour H, Walch G, Deschamps G, Chambat P (2014) Arthrosis of the knee in chronic anterior laxity. Orthop Traumatol Surg Res 100:49–58

    Article  CAS  PubMed  Google Scholar 

  12. Dong Y, Hu G, Hu Y, Xu Q (2014) The effect of meniscal tears and resultant partial meniscectomies on the knee contact stresses: a finite element analysis. Comput Methods Biomech Biomed Engin 17:1452–1463

    Article  PubMed  Google Scholar 

  13. Edd SN, Giori NJ, Andriacchi TP (2015) The role of inflammation in the initiation of osteoarthritis after meniscal damage. J Biomech 48:1420–1426

    Article  PubMed  Google Scholar 

  14. Edd SN, Netravali NA, Favre J, Giori NJ, Andriacchi TP (2015) Alterations in knee kinematics after partial medial meniscectomy are activity dependent. Am J Sports Med 43:1399–1407

    Article  PubMed  Google Scholar 

  15. Hall M, Stevermer CA, Gillette JC (2012) Gait analysis post anterior cruciate ligament reconstruction: knee osteoarthritis perspective. Gait Posture 36:56–60

    Article  PubMed  Google Scholar 

  16. Hall M, Stevermer CA, Gillette JC (2015) Muscle activity amplitudes and co-contraction during stair ambulation following anterior cruciate ligament reconstruction. J Electromyogr Kinesiol 25:298–304

    Article  PubMed  Google Scholar 

  17. Hall M, Wrigley TV, Metcalf BR, Cicuttini FM, Wang Y, Hinman RS, Dempsey AR, Mills PM, Lloyd DG, Bennell KL (2015) Do moments and strength predict cartilage changes following partial meniscectomy? Med Sci Sports Exerc 47:1549–1556

    Article  PubMed  Google Scholar 

  18. Hall M, Wrigley TV, Metcalf BR, Hinman RS, Dempsey AR, Mills PM, Cicuttini FM, Lloyd DG, Bennell KL (2013) A longitudinal study of strength and gait after arthroscopic partial meniscectomy. Med Sci Sports Exerc 45:2036–2043

    Article  PubMed  Google Scholar 

  19. Hart JM, Pietrosimone B, Hertel J, Ingersoll CD (2010) Quadriceps activation following knee injuries: a systematic review. J Athl Train 45:87–97

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hasegawa T, Otani T, Takeda K, Matsumoto H, Harato K, Toyama Y, Nagura T (2015) Anterior cruciate ligament reconstruction does not fully restore normal 3D knee kinematics at 12 months during walking and walk-pivoting: a longitudinal gait analysis study. J Appl Biomech 31:330–339

    Article  PubMed  Google Scholar 

  21. Higuchi H, Shirakura K, Kimura M, Terauchi M, Shinozaki T, Watanabe H, Takagishi K (2006) Changes in biochemical parameters after anterior cruciate ligament injury. Int Orthop 30:43–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kirtley C, Whittle MW, Jefferson RJ (1985) Influence of walking speed on gait parameters. J Biomed Eng 7:282–288

    Article  CAS  PubMed  Google Scholar 

  23. Koo S, Rylander JH, Andriacchi TP (2011) Knee joint kinematics during walking influences the spatial cartilage thickness distribution in the knee. J Biomech 44:1405–1409

    Article  PubMed  PubMed Central  Google Scholar 

  24. LaPrade CM, Dornan GJ, Granan LP, LaPrade RF, Engebretsen L (2015) Outcomes after anterior cruciate ligament reconstruction using the Norwegian knee ligament registry of 4691 patients: how does meniscal repair or resection affect short-term outcomes? Am J Sports Med 43:1591–1597

    Article  PubMed  Google Scholar 

  25. Lepley LK, Wojtys EM, Palmieri-Smith RM (2015) Does concomitant meniscectomy or meniscal repair affect the recovery of quadriceps function post-ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 23:2756–2761

    Article  PubMed  Google Scholar 

  26. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35:1756–1769

    Article  PubMed  Google Scholar 

  27. Meyer AJ, D’Lima DD, Besier TF, Lloyd DG, Colwell CW Jr, Fregly BJ (2013) Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait? J Orthrop Res 31:921–929

    Article  Google Scholar 

  28. Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61:617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oiestad BE, Holm I, Aune AK, Gunderson R, Myklebust G, Engebretsen L, Fosdahl MA, Risberg MA (2010) Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow-up. Am J Sports Med 38:2201–2210

    Article  PubMed  Google Scholar 

  30. Oiestad BE, Juhl CB, Eitzen I, Thorlund JB (2015) Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis. A systematic review and meta-analysis. Osteoarthritis Cartilage 23:171–177

    Article  CAS  PubMed  Google Scholar 

  31. Petersen W, Taheri P, Forkel P, Zantop T (2014) Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg 134:1417–1428

    Article  PubMed  Google Scholar 

  32. Rice DA, McNair PJ (2010) Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rhem 40:250–266

    Article  Google Scholar 

  33. Scanlan S, Blazek K, Schmidt J (2007) Relationship between knee flexion moment and early cartilage changes in the ACL reconstructed knee. In: Proceedings of the American Society of Biomechanics conference

  34. Scanlan SF, Chaudhari AM, Dyrby CO, Andriacchi TP (2010) Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J Biomech 43:1817–1822

    Article  PubMed  PubMed Central  Google Scholar 

  35. Scanlan SF, Favre J, Andriacchi TP (2013) The relationship between peak knee extension at heel-strike of walking and the location of thickest femoral cartilage in ACL reconstructed and healthy contralateral knees. J Biomech 46:849–854

    Article  PubMed  Google Scholar 

  36. Schache AG, Baker R (2007) On the expression of joint moments during gait. Gait Posture 25:440–452

    Article  PubMed  Google Scholar 

  37. Shelbourne KD, Gray T (2000) Results of anterior cruciate ligament reconstruction based on meniscus and articular cartilage status at the time of surgery five- to fifteen-year evaluations. Am J Sports Med 28:446–452

    CAS  PubMed  Google Scholar 

  38. Stam HJ, Binkhorst RA, Kuhlmann P, van Nieuwenhuyzen JF (1992) Clinical progress and quadriceps torque ratios during training of meniscectomy patients. Int J Sports Med 13:183–188

    Article  CAS  PubMed  Google Scholar 

  39. Sturnieks DL, Besier TF, Hamer PW, Ackland TR, Mills PM, Stachowiak GW, Podsiadlo P, Lloyd DG (2008) Knee strength and knee adduction moments following arthroscopic partial meniscectomy. Med Sci Sports Exerc 40:991–997

    Article  PubMed  Google Scholar 

  40. Sturnieks DL, Besier TF, Mills PM, Ackland TR, Maguire KF, Stachowiak GW, Podsiadlo P, Lloyd DG (2008) Knee joint biomechanics following arthroscopic partial meniscectomy. J Orthop Res 26:1075–1080

    Article  PubMed  Google Scholar 

  41. Telianidis S, Perraton L, Clark RA, Pua YH, Fortin K, Bryant AL (2014) Diminished sub-maximal quadriceps force control in anterior cruciate ligament reconstructed patients is related to quadriceps and hamstring muscle dyskinesia. J Electromyogr Kinesiol 24:513–519

    Article  PubMed  Google Scholar 

  42. Tourville TW, Jarrell KM, Naud S, Slauterbeck JR, Johnson RJ, Beynnon BD (2014) Relationship between isokinetic strength and tibiofemoral joint space width changes after anterior cruciate ligament reconstruction. Am J Sports Med 42:302–311

    Article  PubMed  Google Scholar 

  43. Varma RK, Duffell LD, Nathwani D, McGregor AH (2014) Knee moments of anterior cruciate ligament reconstructed and control participants during normal and inclined walking. BMJ Open 4(6):e004753

    Article  PubMed  PubMed Central  Google Scholar 

  44. Walter JP, D’Lima DD, Colwell CW Jr, Fregly BJ (2010) Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J Orthop Res 28:1348–1354

    Article  PubMed  PubMed Central  Google Scholar 

  45. Webster KE, Feller JA (2012) The knee adduction moment in hamstring and patellar tendon anterior cruciate ligament reconstructed knees. Knee Surg Sports Traumatol Arthrosc 20:2214–2219

    Article  PubMed  Google Scholar 

  46. Wellsandt E, Gardinier E, Manal K, Axe M, Buchanan T, Snyder-Mackler L (2014) Association of joint moments and contact forces with early knee joint osteoarthritis after acl injury and reconstruction. Osteoarthritis Cartilage 22:S86–S87

    Article  Google Scholar 

  47. Zabala ME, Favre J, Andriacchi TP (2015) Relationship between knee mechanics and time since injury in ACL-deficient knees without signs of osteoarthritis. Am J Sports Med 43:1189–1196

    Article  PubMed  Google Scholar 

  48. Zabala ME, Favre J, Scanlan SF, Donahue J, Andriacchi TP (2013) Three-dimensional knee moments of ACL reconstructed and control subjects during gait, stair ascent, and stair descent. J Biomech 46:515–520

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

M.H. is supported by National Health and Medical Research Council (NHMRC) programme Grant (#631717), and L.P. was a recipient of an NHMRC postgraduate scholarship. A/Professor A.L.B. is a recipient of the NHMRC Career Development Fellowship (R.D. Wright Biomedical, #1053521). Dr. Clark is a recipient of the NHMRC Career Development Fellowship (R.D..Wright Biomedical, #1090415). The study sponsor did not play any role in the study design, collection, analysis or interpretation of data, nor in the writing of the manuscript or decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Hall.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, M., Bryant, A.L., Wrigley, T.V. et al. Does meniscal pathology alter gait knee biomechanics and strength post-ACL reconstruction?. Knee Surg Sports Traumatol Arthrosc 24, 1501–1509 (2016). https://doi.org/10.1007/s00167-015-3908-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3908-x

Keywords

Navigation