Skip to main content
Log in

Impaired voluntary quadriceps force control following anterior cruciate ligament reconstruction: relationship with knee function

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Impairments in quadriceps force control and altered quadriceps and hamstring muscle activation strategies have been observed following anterior cruciate ligament reconstruction; however, the functional implications of these impairments are unclear. This study examined the cross-sectional associations between quadriceps force control, quadriceps activation, hamstring coactivation and clinically assessed knee function following anterior cruciate ligament reconstruction with a hamstring graft.

Methods

Sixty-six patients (18 ± 3 months following surgery) and 41 uninjured individuals participated. Quadriceps force control was assessed using an isometric knee extension task. Participants cyclically increased and decreased quadriceps force at slow speeds between 5 and 30 % maximum voluntary isometric contraction matching a moving target displayed on a screen. Quadriceps activation and hamstring coactivation were assessed concurrently using surface electromyography. Knee function was assessed with the Cincinnati Knee Rating Scale and three single-leg hop tests.

Results

The reconstructed group completed the task with 48 % greater root-mean-square error (RMSE), indicating significantly worse quadriceps force control (p < 0.001). In a multivariable model adjusted for sex, greater RMSE and greater lateral hamstring coactivation were significantly associated with worse knee function that is greater odds of scoring <85 % on one or more knee functional assessment.

Conclusions

Less-accurate quadriceps force output and greater hamstring coactivation are associated with worse knee joint function following anterior cruciate ligament reconstruction and may contribute to irregular knee joint loading and the onset or progression of knee osteoarthritis. Impairments in quadriceps force control and altered muscle activation strategies may be modifiable through neuromuscular training, and this is an area for future research.

Level of evidence

Case–control study, Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abrams GD, Harris JD, Gupta AK et al (2014) Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthop J Sports Med 2(1):1–10

    Google Scholar 

  2. Andriacchi TP, Koo S, Scanlan SF (2009) Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg 91(Suppl 1):95–101

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andriacchi TP, Mundermann A (2006) The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol 18(5):514–518

    Article  PubMed  Google Scholar 

  4. Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med 39(3):538–543

    Article  PubMed  Google Scholar 

  5. Barber-Westin SD, Noyes FR, McCloskey JW (1999) Rigorous statistical reliability, validity, and responsiveness testing of the Cincinnati knee rating system in 350 subjects with uninjured, injured, or anterior cruciate ligament-reconstructed knees. Am J Sports Med 27(4):402–416

    CAS  PubMed  Google Scholar 

  6. Baumeister J, Reinecke K, Schubert M, Weiß M (2011) Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res 29:1383–1389

    Article  PubMed  Google Scholar 

  7. Besier TF, Fredericson M, Gold GE, Beaupré GS, Delp SL (2009) Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J Biomech 42(7):898–905

    Article  PubMed  PubMed Central  Google Scholar 

  8. Borchers JR, Kaeding CC, Pedroza AD, Huston LJ, Spindler KP, Wright RW (2011) Intra-articular findings in primary and revision anterior cruciate ligament reconstruction surgery. Am J Sports Med 39(9):1889–1893

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brown TN, Palmieri-Smith RM, McLean SG (2009) Sex and limb differences in hip and knee kinematics and kinetics during anticipated and unanticipated jump landings: implications for anterior cruciate ligament injury. Br J Sports Med 43(13):1049–1056

    Article  CAS  PubMed  Google Scholar 

  10. Bryant AL, Clark RA, Pua Y-H (2009) Morphology of hamstring torque-time curves following ACL injury and reconstruction: mechanisms and implications. J Orthop Res 91:1424–1431

    Google Scholar 

  11. Cameron ML, Briggs KK, Steadman JR (2003) Reproducibility and reliability of the Outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 31(1):83–86

    PubMed  Google Scholar 

  12. Cammarata ML, Dhaher YY (2008) The differential effects of gender, anthropometry, and prior hormonal state on frontal plane knee joint stiffness. Clin Biomech 23(7):937–945

    Article  Google Scholar 

  13. Cowan SM, Crossley KM, Bennell KL (2009) Altered hip and trunk muscle function in individuals with patellofemoral pain. Br J Sports Med 43(8):584–588

    Article  CAS  PubMed  Google Scholar 

  14. Daanen H, Mazure M, Holewijn M, Van der Velde E (1990) Reproducibility of the mean power frequency of the surface electromyogram. Eur J Appl Physiol 61(3–4):274–277

    Article  CAS  Google Scholar 

  15. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient a prospective outcome study. Am J Sports Med 22(5):632–644

    Article  CAS  PubMed  Google Scholar 

  16. Eitzen I, Holm I, Risberg MA (2009) Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med 43(5):371–376

    Article  CAS  PubMed  Google Scholar 

  17. Fitzgerald GK, Axe MJ, Snyder-Mackler L (2000) The efficacy of perturbation training in nonoperative anterior cruciate ligament rehabilitation programs for physically active individuals. Phys Ther 80(2):128–151

    CAS  PubMed  Google Scholar 

  18. Gustavsson A, Neeter C, Thomeé P et al (2006) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14(8):778–788

    Article  PubMed  Google Scholar 

  19. Hartigan E, Axe MJ, Snyder-Mackler L (2009) Perturbation training prior to ACL reconstruction improves gait asymmetries in non-copers. J Orthop Res 27(6):724–729

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hopper DM, Strauss GR, Boyle JJ, Bell J (2008) Functional recovery after anterior cruciate ligament reconstruction: a longitudinal perspective. Arch Phys Med Rehabil 89(8):1535–1541

    Article  PubMed  Google Scholar 

  21. Houck J (2005) Invited commentary. Phys Ther 85(8):750–752

    Google Scholar 

  22. Little RJ (1988) A test of missing completely at random for multivariate data with missing values. J Am Statist Assoc 83(404):1198–1202

    Article  Google Scholar 

  23. Logerstedt D, Lynch A, Axe MJ, Snyder-Mackler L (2012) Pre-operative quadriceps strength predicts IKDC2000 scores 6 months after anterior cruciate ligament reconstruction. Knee 20(3):208–212

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lustosa LP, Ocarino JM, de Andrade MAP, Pertence AEdM, Bittencourt NFN, Fonseca ST (2011) Muscle co-contraction after anterior cruciate ligament reconstruction: influence of functional level. J Electromyogr Kinesiol 21(6):1050–1055

    Article  PubMed  Google Scholar 

  25. Madhavan S, Shields RK (2011) Neuromuscular responses in individuals with anterior cruciate ligament repair. Clin Neurophysiol 122(5):997–1004

    Article  PubMed  Google Scholar 

  26. Mall NA, Chalmers PN, Moric M et al (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42(10):2363–2370

    Article  PubMed  Google Scholar 

  27. Miranda DL, Fadale PD, Hulstyn MJ, Shalvoy RM, Machan JT, Fleming BC (2013) Knee biomechanics during a jump-cut maneuver: effects of sex and ACL surgery. Med Sci Sports Exerc 45(5):942–951

    Article  PubMed  PubMed Central  Google Scholar 

  28. Myer GD, Ford KR, Hewett TE (2005) The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J Electromyogr Kinesiol 15(2):181–189

    Article  PubMed  Google Scholar 

  29. Myer GD, Martin L, Ford KR et al (2012) No association of time from surgery with functional deficits in athletes after anterior cruciate ligament reconstruction: evidence for objective return-to-sport criteria. Am J Sports Med 40(10):2256–2263

    Article  PubMed  PubMed Central  Google Scholar 

  30. Noyes FR, Barber S, Magine R (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19(5):513–518

    Article  CAS  PubMed  Google Scholar 

  31. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Hewett TE (2011) Effects of sex on compensatory landing strategies upon return to sport after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 41(8):553–559

    Article  PubMed  Google Scholar 

  32. Paterno MV, Schmitt LC, Ford KR et al (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49(12):1373–1379

    Article  CAS  PubMed  Google Scholar 

  34. Perraton L (2014) Neuromuscular control and knee function after anterior cruciate ligament reconstruction (doctoral dissertation). http://hdl.handle.net/11343/46499

  35. Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury–reduction regimen. Arthroscopy 23(12):1320–1325

    Article  PubMed  Google Scholar 

  36. Reid A, Birmingham TB, Stratford PW, Alcock GK, Giffin JR (2007) Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther 87(3):337–349

    Article  PubMed  Google Scholar 

  37. Schmitt LC, Paterno M, Hewett TE (2012) The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 42(9):750–759

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sisson SB, Camhi SM, Tudor-Locke C, Johnson WD, Katzmarzyk PT (2012) Characteristics of step-defined physical activity categories in US adults. Am J Health Promot 26(3):152–159

    Article  PubMed  Google Scholar 

  39. Sterne JA, White IR, Carlin JB et al (2009) Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. Br Med J 338:b2393

    Article  Google Scholar 

  40. Swanik CB, Lephart SM, Swanik K, Stone D, Fu F (2004) Neuromuscular dynamic restraint in women with anterior cruciate ligament injuries. Clin Orthop 425:189–199

    Article  Google Scholar 

  41. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop 198:43–49

    Google Scholar 

  42. Telianidis S, Perraton L, Clark RA, Pua Y-H, Fortin K, Bryant AL (2014) Diminished sub-maximal quadriceps force control in anterior cruciate ligament reconstructed patients is related to quadriceps and hamstring muscle dyskinesia. J Electromyogr Kinesiol 24(4):513–519

    Article  PubMed  Google Scholar 

  43. Thomeé R, Kaplan Y, Kvist J et al (2011) Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19(11):1798–1805

    Article  PubMed  Google Scholar 

  44. Tsai L-C, McLean S, Colletti PM, Powers CM (2012) Greater muscle co-contraction results in increased tibiofemoral compressive forces in females who have undergone anterior cruciate ligament reconstruction. J Orthop Res 30(12):2007–2014

    Article  PubMed  Google Scholar 

  45. Ward S, Pearce AJ, Pietrosimone B, Bennell K, Clark R, Bryant AL (2014) Neuromuscular deficits following peripheral joint injury: a neurophysiological hypothesis. Muscle Nerve 51(3):327–332

    Article  Google Scholar 

  46. Williams GN, Snyder Mackler L, Barrance PJ, Axe MJ, Buchanan TS (2005) Neuromuscular function after anterior cruciate ligament reconstruction with autologous semitendinosus-gracilis graft. J Electromyogr Kinesiol 15(2):170–180

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Luke Perraton was a recipient of a National Health and Medical Research Council (NHMRC) postgraduate scholarship (APP1038378). Adam Bryant and Ross Clark are recipients of NHMRC Career Development Fellowships (R. D. Wright Biomedical, Nos. 1053521 and 1090415). The authors have no professional or financial affiliations that may be perceived to have biased the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Perraton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perraton, L., Clark, R., Crossley, K. et al. Impaired voluntary quadriceps force control following anterior cruciate ligament reconstruction: relationship with knee function. Knee Surg Sports Traumatol Arthrosc 25, 1424–1431 (2017). https://doi.org/10.1007/s00167-015-3937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3937-5

Keywords

Navigation