Skip to main content
Log in

Patient-specific and intra-operatively modifiable factors assessed by computer navigation predict maximal knee flexion one year after TKA

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

There are multiple factors affecting maximal knee flexion (MKF) after total knee arthroplasty (TKA). The aim of the study was to investigate whether patient-specific factors (PSF) and surgically modifiable factors (SMF), measured by means of a computer-assisted navigation system, can predict the MKF after TKA.

Methods

Data from 99 patients collected during a randomized clinical trial were used for this secondary data analysis. The MKF of the patients was measured preoperatively and 1-year post-surgery. Multiple regression analyses were performed to investigate which combination of variables would be the best to predict the 1-year MKF.

Results

When considering SMF alone, the combination of three factors significantly predicted the 1-year MKF (p = 0.001), explaining 22 % of its variation. When considering only PSF, the combination of pre-op MKF and BMI significantly predicted the 1-year MKF (p < 0.001), explaining 23 % of its variation. When considering both groups of potential predictors simultaneously, the combination of five SMF with two PSF significantly predicted the 1-year MKF (p = 0.001), explaining 32 % of its variation.

Conclusions

Computer navigation variables alone could explain 22 % of the variance in the 1-year MKF. The larger proportion (32 %) of the 1-year MKF variation could be explained with a combination of SMF and PSF. The results of studies in this area could be used to identify patients at risk of poor outcomes.

Level of Evidence

Level II, Prognostic study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bade MJ, Kittelson JM, Kohrt WM, Stevens-Lapsley JE (2014) Predicting functional performance and range of motion outcomes after total knee arthroplasty. Am J Phys Med Rehabil 93(7):579–585

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bauer T, Biau D, Colmar M, Poux X, Hardy P, Lortat-Jacob A (2010) Influence of posterior condylar offset on knee flexion after cruciate-sacrificing mobile-bearing total knee replacement: a prospective analysis of 410 consecutive cases. Knee 17(6):375–380

    Article  CAS  PubMed  Google Scholar 

  3. Bin SI, Nam TS (2007) Early results of high-flex total knee arthroplasty: comparison study at 1-year after surgery. Knee Surg Sports Traumatol Arthrosc 15(4):350–355

    Article  PubMed  Google Scholar 

  4. Cheng T, Zhao S, Peng X, Zhang X (2012) Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials? Knee Surg Sports Traumatol Arthrosc 20(7):1307–1322

    Article  PubMed  Google Scholar 

  5. Clemens U, Miehlke RK (2005) Advanced navigation planning including soft tissue management. Orthopedics 28(10 Suppl):s1259–s1262

    PubMed  Google Scholar 

  6. Dyrhovden GS, Gothesen O, Lygre SH, Fenstad AM, Soras TE, Halvorsen S, Jellestad T, Furnes O (2013) Is the use of computer navigation in total knee arthroplasty improving implant positioning and function? A comparative study of 198 knees operated at a Norwegian district hospital. BMC Musculoskelet Disord 14:321

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fujimoto E, Sasashige Y, Masuda Y, Hisatome T, Eguchi A, Masuda T, Sawa M, Nagata Y (2013) Significant effect of the posterior tibial slope and medial/lateral ligament balance on knee flexion in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(12):2704–2712

    Article  PubMed  Google Scholar 

  8. Gadinsky NE, Ehrhardt JK, Urband C, Westrich GH (2011) Effect of body mass index on range of motion and manipulation after total knee arthroplasty. J Arthroplasty 26(8):1194–1197

    Article  PubMed  Google Scholar 

  9. Gatha NM, Clarke HD, Fuchs R, Scuderi GR, Insall JN (2004) Factors affecting postoperative range of motion after total knee arthroplasty. J Knee Surg 17(4):196–202

    PubMed  Google Scholar 

  10. Geijsen GJ, Heesterbeek PJ, van Stralen G, Anderson PG, Wymenga AB (2013) Do tibiofemoral contact point and posterior condylar offset influence outcome and range of motion in a mobile-bearing total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc 22(3):550–555

    Article  PubMed  Google Scholar 

  11. Goncalves RS, Pinheiro JP, Cabri J (2012) Evaluation of potentially modifiable physical factors as predictors of health status in knee osteoarthritis patients referred for physical therapy. Knee 19(4):373–379

    Article  PubMed  Google Scholar 

  12. Gothesen O, Espehaug B, Havelin LI, Petursson G, Hallan G, Strom E, Dyrhovden G, Furnes O (2014) Functional outcome and alignment in computer-assisted and conventionally operated total knee replacements: a multicentre parallel-group randomised controlled trial. Bone Joint J 96-B(5):609–618

    Article  CAS  PubMed  Google Scholar 

  13. Han SB, Nha KW, Yoon JR, Lee DH, Chae IJ (2008) The reliability of navigation-guided gap technique in total knee arthroplasty. Orthopedics 31(10 Suppl 1)

  14. Hanratty BM, Thompson NW, Wilson RK, Beverland DE (2007) The influence of posterior condylar offset on knee flexion after total knee replacement using a cruciate-sacrificing mobile-bearing implant. J Bone Joint Surg Br 89(7):915–918

    Article  CAS  PubMed  Google Scholar 

  15. Hasegawa M, Takagita H, Sudo A (2015) Prediction of post-operative range of motion using intra-operative soft tissue balance in total knee arthroplasty with navigation. Comput Aided Surg 20(1):47–51

    Article  PubMed  Google Scholar 

  16. Hauschild O, Konstantinidis L, Strohm PC, Niemeyer P, Suedkamp NP, Helwig P (2009) Reliability of leg alignment using the OrthoPilot system depends on knee position: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 17(10):1143–1151

    Article  PubMed  Google Scholar 

  17. Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK (2012) Meta-analysis of navigation versus conventional total knee arthroplasty. J Arthroplasty 27(6):1177–1182

    Article  PubMed  Google Scholar 

  18. Hohman DW Jr, Nodzo SR, Phillips M, Fitz W (2015) The implications of mechanical alignment on soft tissue balancing in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23(12):3632–3636

    Article  PubMed  Google Scholar 

  19. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2010) Does posterior tibial slope influence knee functionality in the anterior cruciate ligament-deficient and anterior cruciate ligament-reconstructed knee? Arthroscopy 26(11):1496–1502

    Article  PubMed  Google Scholar 

  20. Huang HT, Su JY, Wang GJ (2005) The early results of high-flex total knee arthroplasty: a minimum of 2 years of follow-up. J Arthroplasty 20(5):674–679

    Article  PubMed  Google Scholar 

  21. Ishii Y, Noguchi H, Takeda M, Sato J, Toyabe S (2013) Posterior condylar offset does not correlate with knee flexion after TKA. Clin Orthop Relat Res 471(9):2995–3001

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ishii Y, Noguchi H, Takeda M, Sato J, Toyabe SI (2014) Anteroposterior translation does not correlate with knee flexion after total knee arthroplasty. Clin Orthop Relat Res 472:704–709

    Article  PubMed  Google Scholar 

  23. Kansara D, Markel DC (2006) The effect of posterior tibial slope on range of motion after total knee arthroplasty. J Arthroplasty 21(6):809–813

    Article  PubMed  Google Scholar 

  24. Katz MH (2011) Multivariate Analysis: a practical guide for clinicians and public health researchers. Cambridge University Press, Cambridge, pp 93–115

    Book  Google Scholar 

  25. Kim JH (2013) Effect of posterior femoral condylar offset and posterior tibial slope on maximal flexion angle of the knee in posterior cruciate ligament sacrificing total knee arthroplasty. Knee Surg Relat Res 25(2):54–59

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim KH, Bin SI, Kim JM (2012) The correlation between posterior tibial slope and maximal angle of flexion after total knee arthroplasty. Knee Surg Relat Res 24(3):158–163

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kotani A, Yonekura A, Bourne RB (2005) Factors influencing range of motion after contemporary total knee arthroplasty. J Arthroplasty 20(7):850–856

    Article  PubMed  Google Scholar 

  28. Lampe F, Hille E (2004) Navigated implantation of the columbus total knee arthroplasty with the orthopilot system: version 4.0. In: Stiehl JB, Konermann RG, Haaker RG (eds) Navigation and robotics in total joint and spine surgery. Springer Berlin Heidelberg, pp 248–253

  29. Lungu E, Desmeules F, Dionne CE, Belzile EL, Vendittoli PA (2014) Prediction of poor outcomes six months following total knee arthroplasty in patients awaiting surgery. BMC Musculoskelet Disord 15(1):299

    Article  PubMed  PubMed Central  Google Scholar 

  30. Malviya A, Lingard EA, Weir DJ, Deehan DJ (2009) Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc 17(5):491–498

    Article  PubMed  Google Scholar 

  31. Marques CJ, Daniel S, Sufi-Siavach A, Lampe F (2015) No differences in clinical outcomes between fixed- and mobile-bearing computer-assisted total knee arthroplasties and no correlations between navigation data and clinical scores. Knee Surg Sports Traumatol Arthrosc 23(6):1660–1668

    Article  PubMed  Google Scholar 

  32. Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K (2007) Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty 22(8):1097–1106

    Article  PubMed  Google Scholar 

  33. Matsumoto T, Muratsu H, Kawakami Y, Takayama K, Ishida K, Matsushita T, Akisue T, Nishida K, Kuroda R, Kurosaka M (2014) Soft-tissue balancing in total knee arthroplasty: cruciate-retaining versus posterior-stabilised, and measured-resection versus gap technique. Int Orthop 38(3):531–537

    Article  PubMed  Google Scholar 

  34. Norkin CC, White DJ (2009) Measurement of joint motion: a guide to goniometry, 4th edn. F. A. Davis Company, Philadelphia, pp 243–246

    Google Scholar 

  35. Pang HN, Yeo SJ, Chong HC, Chin PL, Ong J, Lo NN (2011) Computer-assisted gap balancing technique improves outcome in total knee arthroplasty, compared with conventional measured resection technique. Knee Surg Sports Traumatol Arthrosc 19(9):1496–1503

    Article  PubMed  Google Scholar 

  36. Polaris Optical Tracking Systems (2016) Northern Digital Incorporation. http://www.ndigital.com/medical/products/polaris-family/#specifications

  37. Ritter MA, Berend ME, Harty LD, Davis KE, Meding JB, Keating EM (2004) Predicting range of motion after revision total knee arthroplasty: clustering and log-linear regression analyses. J Arthroplasty 19(3):338–343

    Article  PubMed  Google Scholar 

  38. Ritter MA, Harty LD, Davis KE, Meding JB, Berend ME (2003) Predicting range of motion after total knee arthroplasty. Clustering, log-linear regression, and regression tree analysis. J Bone Joint Surg Am 85-A(7):1278–1285

    Article  PubMed  Google Scholar 

  39. Ritter MA, Lutgring JD, Davis KE, Berend ME (2008) The effect of postoperative range of motion on functional activities after posterior cruciate-retaining total knee arthroplasty. J Bone Joint Surg Am 90(4):777–784

    Article  PubMed  Google Scholar 

  40. Scholes C, Sahni V, Lustig S, Parker DA, Coolican MR (2014) Patient-specific instrumentation for total knee arthroplasty does not match the pre-operative plan as assessed by intra-operative computer-assisted navigation. Knee Surg Sports Traumatol Arthrosc 22(3):660–665

    Article  PubMed  Google Scholar 

  41. Seo SS, Kim CW, Kim JH, Min YK (2013) Clinical results associated with changes of posterior tibial slope in total knee arthroplasty. Knee Surg Relat Res 25(1):25–29

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shi X, Shen B, Kang P, Yang J, Zhou Z, Pei F (2013) The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(12):2696–2703

    Article  PubMed  Google Scholar 

  43. Singh G, Tan JH, Sng BY, Awiszus F, Lohmann CH, Nathan SS (2013) Restoring the anatomical tibial slope and limb axis may maximise post-operative flexion in posterior-stabilised total knee replacements. Bone Joint J 95-B(10):1354–1358

    Article  CAS  PubMed  Google Scholar 

  44. Watanabe T, Muneta T, Sekiya I, Banks SA (2013) Intraoperative joint gaps affect postoperative range of motion in TKAs with posterior-stabilized prostheses. Clin Orthop Relat Res 471(4):1326–1333

    Article  PubMed  Google Scholar 

  45. Wiles AD, Thompsen DG (2004) Frantz DD Accuracy assessment and interpretation for optical tracking systems. In: Galloway RLJ (ed) Medical Imaging 2004: Visualisation. Image-Guided Procedures and Display, San Diego, pp 421–432

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Monika Hammond and Roy Hammond for proofreading the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos J. Marques.

Ethics declarations

Conflict of interest statement

Prof. Dr. Lampe is a consultant for B. Braun Aesculap. B. Braun Aesculap is sponsoring the research position of Mr. Marques at the Science Office of the Department of Orthopedics and Joint Replacement. Ms. Fiedler, Dr. Sufi-Siavach, Prof. Dr. Carita and Prof. Dr. Matziolis have no financial relationships to disclose.

Ethical review committee statement

The Medical Ethics Commission of the Federal State of Hamburg approved the research proposal (File Number: #2226). The clinical trial was registered under ClinicalTrials.gov (NCT00822640).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lampe, F., Marques, C.J., Fiedler, F. et al. Patient-specific and intra-operatively modifiable factors assessed by computer navigation predict maximal knee flexion one year after TKA. Knee Surg Sports Traumatol Arthrosc 24, 3457–3465 (2016). https://doi.org/10.1007/s00167-016-4134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4134-x

Keywords

Navigation