Skip to main content
Log in

Greater magnitude tibiofemoral contact forces are associated with reduced prevalence of osteochondral pathologies 2–3 years following anterior cruciate ligament reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

External loading of osteoarthritic and healthy knees correlates with current and future osteochondral tissue state. These relationships have not been examined following anterior cruciate ligament reconstruction. We hypothesised greater magnitude tibiofemoral contact forces were related to increased prevalence of osteochondral pathologies, and these relationships were exacerbated by concomitant meniscal injury.

Methods

This was a cross-sectional study of 100 individuals (29.7 ± 6.5 years, 78.1 ± 14.4 kg) examined 2–3 years following hamstring tendon anterior cruciate ligament reconstruction. Thirty-eight participants had concurrent meniscal pathology (30.6 ± 6.6 years, 83.3 ± 14.3 kg), which included treated and untreated meniscal injury, and 62 participants (29.8 ± 6.4 years, 74.9 ± 13.3 kg) were free of meniscal pathology. Magnetic resonance imaging of reconstructed knees was used to assess prevalence of tibiofemoral osteochondral pathologies (i.e., cartilage defects and bone marrow lesions). A calibrated electromyogram-driven neuromusculoskeletal model was used to predict medial and lateral tibiofemoral compartment contact forces from gait analysis data. Relationships between contact forces and osteochondral pathology prevalence were assessed using logistic regression models.

Results

In patients with reconstructed knees free from meniscal pathology, greater medial contact forces were related to reduced prevalence of medial cartilage defects (odds ratio (OR) = 0.7, Wald χ2(2) = 7.9, 95% confidence interval (CI) = 0.50–95, p = 0.02) and medial bone marrow lesions (OR = 0.8, Wald χ2(2) = 4.2, 95% CI = 0.7–0.99, p = 0.04). No significant relationships were found in lateral compartments. In reconstructed knees with concurrent meniscal pathology, no relationships were found between contact forces and osteochondral pathologies.

Conclusions

In patients with reconstructed knees free from meniscal pathology, increased contact forces were associated with fewer cartilage defects and bone marrow lesions in medial, but not, lateral tibiofemoral compartments. No significant relationships were found between contact forces and osteochondral pathologies in reconstructed knees with meniscal pathology for any tibiofemoral compartment. Future studies should focus on determining longitudinal effects of contact forces and changes in osteochondral pathologies.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson MJ, Diko S, Baehr LM, Baar K, Bodine SC, Christiansen BA (2016) Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice. J Orthop Res 34:1680–1687

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barenius B, Webster WK, McClelland J, Feller J (2013) Hamstring tendon anterior cruciate ligament reconstruction: does gracilis tendon harvest matter? Int Orthop 37:207–212

    Article  PubMed  Google Scholar 

  3. Beckwee D, Vaes P, Shahabpour M, Muyldermans R, Rommers N, Bautmans I (2015) The influence of joint loading on bone marrow lesions in the knee: a systematic review with meta-analysis. Am J Sports Med 43:3093–3107

    Article  PubMed  Google Scholar 

  4. Bennell KL, Bowles KA, Wang Y, Cicuttini F, Davies-Tuck M, Hinman RS (2011) Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann Rheum Dis 70:1770–1774

    Article  PubMed  Google Scholar 

  5. Bennell KL, Creaby MW, Wrigley TV, Bowles KA, Hinman RS, Cicuttini F et al (2010) Bone marrow lesions are related to dynamic knee loading in medial knee osteoarthritis. Ann Rheum Dis 69:1151–1154

    Article  PubMed  Google Scholar 

  6. Bergmann G, Bender A, Graichen F, Dymke J, Rohlmann A, Trepczynski A et al (2014) Standardized loads acting in knee implants. PLoS One 9:e86035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buchanan TS, Lloyd DG (1995) Muscle activity is different for humans performing static tasks which require force control and position control. Neurosci Lett 194:61–64

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Tie K, Qi Y, Li B, Chen B, Chen L (2017) Anteromedial versus transtibial technique in single-bundle autologous hamstring ACL reconstruction: a meta-analysis of prospective randomized controlled trials. J Orthop Surg Res 12:167

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cicuttini F, Ding C, Wluka A, Davis S, Ebeling PR, Jones G (2005) Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum 52:2033–2039

    Article  PubMed  Google Scholar 

  10. Cicuttini FM, Jones G, Forbes A, Wluka AE (2004) Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis 63:1124–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Creaby MW, Wang Y, Bennell KL, Hinman RS, Metcalf BR, Bowles KA et al (2010) Dynamic knee loading is related to cartilage defects and tibial plateau bone area in medial knee osteoarthritis. Osteoarthritis Cartilage 18:1380–1385

    Article  CAS  PubMed  Google Scholar 

  12. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT et al (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54:1940–1950

    Article  PubMed  Google Scholar 

  13. Dore D, Martens A, Quinn S, Ding C, Winzenberg T, Zhai G et al (2010) Bone marrow lesions predict site-specific cartilage defect development and volume loss: a prospective study in older adults. Arthritis Res Ther 12:R222

    Article  PubMed  PubMed Central  Google Scholar 

  14. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  15. Fregly BJ, Besier TF, Lloyd DG, Delp SL, Banks SA, Pandy MG et al (2012) Grand challenge competition to predict in vivo knee loads. J Orthop Res 30:503–513

    Article  PubMed  Google Scholar 

  16. Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA et al (2013) Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J Biomech 46:2778–2786

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hewett TE, Di Stasi SL, Myer GD (2013) Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med 41:216–224

    Article  PubMed  Google Scholar 

  18. Hopkins JT, Ingersoll CD, Edwards JE, Cordova ML (2000) Changes in soleus motoneuron pool excitability after artificial knee joint effusion. Arch Phys Med Rehabil 81:1199–1203

    Article  CAS  PubMed  Google Scholar 

  19. Hunter DJ, Guermazi A, Lo GH, Grainger AJ, Conaghan PG, Boudreau RM et al (2011) Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19:990–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP et al (2006) Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum 54:1529–1535

    Article  PubMed  Google Scholar 

  21. Hurwitz DE, Ryals AR, Block JA, Sharma L, Schnitzer TJ, Andriacchi TP (2000) Knee pain and joint loading in subjects with osteoarthritis of the knee. J Orthop Res 18:572–579

    Article  CAS  PubMed  Google Scholar 

  22. Konrath JM, Vertullo CJ, Kennedy BA, Bush HS, Barrett RS, Lloyd DG (2016) Morphologic characteristics and strength of the hamstring muscles remain altered at 2 years after use of a hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med 44:2589–2598

    Article  PubMed  Google Scholar 

  23. Lloyd DG, Besier TF (2003) An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36:765–776

    Article  PubMed  Google Scholar 

  24. Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50:3145–3152

    Article  CAS  PubMed  Google Scholar 

  25. MacDonald P, Kim C, McRae S, Leiter J, Khan R, Whelan D (2017) No clinical differences between anteromedial portal and transtibial technique for femoral tunnel positioning in anterior cruciate ligament reconstruction: a prospective randomized, controlled trial. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-017-4664-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Meyer AJ, D’Lima DD, Besier TF, Lloyd DG, Colwell CW Jr, Fregly BJ (2013) Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait? J Orthop Res 31:921–929

    Article  PubMed  Google Scholar 

  27. Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61:617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Modenese L, Ceseracciu E, Reggiani M, Lloyd DG (2016) Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique. J Biomech 49:141–148

    Article  PubMed  Google Scholar 

  29. Oiestad BE, Engebretsen L, Storheim K, Risberg MA (2009) Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med 37:1434–1443

    Article  PubMed  Google Scholar 

  30. Pizzolato C, Reggiani M, Saxby DJ, Ceseracciu E, Modenese L, Lloyd DG (2017) Biofeedback for gait retraining based on real-time estimation of tibiofemoral joint contact forces. IEEE Trans Neural Syst Rehabil Eng 25:1612–1621

    Article  PubMed  PubMed Central  Google Scholar 

  31. Roemer FW, Kwoh CK, Hannon MJ, Hunter DJ, Eckstein F, Fujii T et al (2015) What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative. Arthritis Rheumatol 67:2085–2096

    Article  PubMed  PubMed Central  Google Scholar 

  32. Saxby DJ, Bryant AL, Modenese L, Gerus P, Killen BA, Konrath J et al (2016) Tibiofemoral contact forces in the anterior cruciate ligament-reconstructed knee. Med Sci Sports Exerc 48:2195–2206

    Article  PubMed  Google Scholar 

  33. Saxby DJ, Modenese L, Bryant AL, Gerus P, Killen B, Fortin K et al (2016) Tibiofemoral contact forces during walking, running and sidestepping. Gait Posture 49:78–85

    Article  PubMed  Google Scholar 

  34. Segal NA, Anderson DD, Iyer KS, Baker J, Torner JC, Lynch JA et al (2009) Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort. J Orthop Res 27:1562–1568

    Article  PubMed  PubMed Central  Google Scholar 

  35. Segal NA, Kern AM, Anderson DD, Niu J, Lynch J, Guermazi A et al (2012) Elevated tibiofemoral articular contact stress predicts risk for bone marrow lesions and cartilage damage at 30 months. Osteoarthritis Cartilage 20:1120–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma L, Chmiel JS, Almagor O, Felson D, Guermazi A, Roemer F et al (2013) The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST study. Ann Rheum Dis 72:235–240

    Article  PubMed  Google Scholar 

  37. Sharma L, Hurwitz DE, Thonar EJ, Sum JA, Lenz ME, Dunlop DD et al (1998) Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum 41:1233–1240

    Article  CAS  PubMed  Google Scholar 

  38. Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 18:292–299

    Article  CAS  PubMed  Google Scholar 

  39. Shull PB, Silder A, Shultz R, Dragoo JL, Besier TF, Delp SL et al (2013) Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis. J Orthop Res 31:1020–1025

    Article  PubMed  Google Scholar 

  40. Trepczynski A, Kutzner I, Bergmann G, Taylor WR, Heller MO (2014) Modulation of the relationship between external knee adduction moments and medial joint contact forces across subjects and activities. Arthritis Rheumatol 66:1218–1227

    Article  PubMed  PubMed Central  Google Scholar 

  41. Walter JP, D’Lima DD, Colwell CW Jr, Fregly BJ (2010) Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J Orthop Res 28:1348–1354

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang X, Wang Y, Bennell KL, Wrigley TV, Cicuttini FM, Fortin K et al (2017) Cartilage morphology at 2–3 years following anterior cruciate ligament reconstruction with or without concomitant meniscal pathology. Knee Surg Sports Traumatol Arthrosc 25:426–436

    Article  PubMed  Google Scholar 

  43. Wellsandt E, Gardinier ES, Manal K, Axe MJ, Buchanan TS, Snyder-Mackler L (2016) Decreased knee joint loading associated with early knee osteoarthritis after anterior cruciate ligament injury. Am J Sports Med 44:143–151

    Article  PubMed  Google Scholar 

  44. Winby CR, Lloyd DG, Besier TF, Kirk TB (2009) Muscle and external load contribution to knee joint contact loads during normal gait. J Biomech 42:2294–2300

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Alasdair Dempsey and Dr. Nicole Grigg for their contributions to data collection, and Dr. Cameron Norsworthy for assisting with recruitment of participants.

Funding

We acknowledge funding support from the Australian National Health and Medical Research Council (NHMRC) Project Grant (to ALB, DGL, KLB and FMC, Grant #628850), NHMRC R. D. Wright Biomedical Fellowship (to ALB), NHMRC Career Development Fellowship (to YW), and Principal Research Fellowship (to KLB). Dr. David John Saxby would like to acknowledge Griffith University for Ph.D. scholarship and stipend awards, as well as the International Society of Biomechanics for Matching Dissertation Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David John Saxby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxby, D.J., Bryant, A.L., Van Ginckel, A. et al. Greater magnitude tibiofemoral contact forces are associated with reduced prevalence of osteochondral pathologies 2–3 years following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27, 707–715 (2019). https://doi.org/10.1007/s00167-018-5006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5006-3

Keywords

Navigation