Skip to main content
Log in

A new process route for the manufacturing of highly formed fiber-metal-laminates with elastomer interlayers (FMEL)

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fiber-metal-laminates (FML) provide a high variability in part properties and are often used to satisfy multiple component demands in aerospace applications. However, conventional use of hybrid laminates in the automotive sector is unrewarding due to high manufacturing costs and strongly restricted forming degrees. This paper presents an approach, which enables the manufacturing of laminate components with low bending radii for high volume applications. To separate the carbon fiber–reinforced polymers (CFRP) from the metal sheets, an elastomer layer was used, resulting in the omission of surface treatments for adhesion and corrosion prevention. The forming degrees presented in this work exceeded current approaches. Furthermore, the influence of the forming process on the mechanical properties was analyzed, thus ensuring the profitability of the presented approach for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sinmazçelik T, Avcu E, Bora M et al (2011) A review: fibre metal laminates, background, bonding types and applied test methods. Mater Des 32:3671–3685

    Article  Google Scholar 

  2. Hinz S, Omoori T, Hojo M, Schulte K (2009) Damage characterisation of fibre metal laminates under interlaminar shear load. Compos A: Appl Sci Manuf 40(6–7):925–931. https://doi.org/10.1016/j.compositesa.2009.04.020

    Article  Google Scholar 

  3. Takamatsu T, Matsumura T, Ogura N, Shimokawa T, Kakuta Y (1999) Fatigue crack growth properties of a GLARE3-5/4 fiber/metal laminate. Eng Fract Mech 63(3):253–272

    Article  Google Scholar 

  4. Homan JJ (2006) Fatigue initiation in fibre metal laminates. Int J Fatigue 28(4):366–374

    Article  Google Scholar 

  5. Laliberte JF, Poon C, Straznicky PV et al (2002) Post-impact fatigue damage growth in fiber-metal laminates. Int J Fatigue 24(2):249–256

    Article  Google Scholar 

  6. Alderliesten RC, Hagenbeek M, Homan JJ, Hooijmeijer PA, de Vries TJ, Vermeeren CAJR (2003) Fatigue and damage tolerance of Glare. Appl Compos Mater 10(4):223–242. https://doi.org/10.1023/A:1025537818644

    Article  Google Scholar 

  7. Vlot A, Gunnink JW (2001) Fibre metal laminates - an introduction. Springer Verlag Netherlands, Dordrecht

    Book  Google Scholar 

  8. Vermeeren C (2003) An historic overview of the development of fibre metal laminates. Appl Compos Mater 10(4–5):189–205

    Article  Google Scholar 

  9. Stoll M, Weidenmann KA (2017) Materials selection for a fiber-metal-laminate with elastomer interlayers. roceedings of the 21st international conference on composite materials, Xi’an, pp 3795–3801

    Google Scholar 

  10. Lin CT, Kao PW, Jen M-HR (1994) Thermal residual strains in carbon fibre-reinforced aluminium laminates. Composites (25):303–307

  11. Müller B, Sinke J, Anisimov AG, Groves R (2015) Thermal strains in heated fiber metal laminates. In: Aggelis DG, Van Hemelrijck D (eds) Emerging technologies in non-destructive testing VI. CRC Press, London, pp 205–211

  12. Wang W, Takao Y, Matsubara T (eds) (2007) Galvanic corrosion-resistant carbon fiber metal laminates. 16th International Conference on Composite Materials. Kyoto, Japan. 07. August 2007

  13. Sarlin E, Hoikkanen M, Frisk L, Vuorinen J, Vippola M, Lepistö T (2014) Ageing of corrosion resistant steel/rubber/composite hybrid structures. Int J Adhes Adhes 49:26–32

  14. Stoll M, Stemmer F, Ilinzeer S et al (eds) (2017) Optimization of corrosive properties of carbon fiber reinforced aluminum laminates due to integration of an elastomer interlayer. KEM 742: 287–293. https://doi.org/10.4028/www.scientific.net/KEM.742.287

  15. Sarlin E, Hoikkanen M, Frisk L, Vuorinen J, Vippola M, Lepistö T (2014) Ageing of corrosion resistant steel/rubber/composite hybrid structures. Int J Adhes Adhes 49:26–32

  16. Stoll M,Weidenmann KA (eds) (2016) The impact of environmental stress on the mechanical behavior of fiber-metal-laminates with elastomer interlayers (FMEL). Proceedings of the 17th European Conference on Composite Materials (ECCM17), München

  17. Stoll M,Weidenmann KA (eds) Characterization of interface properties of fiber-metal-laminates (FML) with optimized interfaces. Euro Hybrid Materials and Structures. Kaiserslautern. 20-21 April 2016, vol 2016. Karlsruhe Institute of Technology (KIT), Institute of Applied Materials IAM-WK

  18. Sessner V, Stoll M, Feuvrier A et al (eds) (2017) Determination of the damping characteristics of fiber-metal-elastomer laminates using piezo-indicated-loss-factor experiments. Trans Tech Publ

  19. Sarlin E, Liu Y, Vippola M, Zogg M, Ermanni P, Vuorinen J, Lepistö T (2012) Vibration damping properties of steel/rubber/composite hybrid structures. Compos Struct 94(11):3327–3335

  20. Sinke J (2003) Manufacturing of GLARE parts and structure. Appl Compos Mater 10(4/5):293–305. https://doi.org/10.1023/A:1025589230710

  21. Fleischer J, Roth S, Sommer C (2016) Faser-Metall-Gummi-Hybridlaminate - Produktionsprozessentwicklung für ein neuartiges Materialsystem. ZWF 111(9):483–486

  22. Roth S, Coutandin S, Fleischer J (2019) Material- and process characterization of fibre-metal-elastomer laminate components with high forming degrees. In: Dröder K, Vietor T (eds) Technologies for economical and functional lightweight design: conference proceedings 2018. Springer Vieweg, Berlin, Wiesbaden, pp 147–154

  23. Vogelesang LB, Vlot A (2000) Development of fibre metal laminates for advanced aerospace structures. J Mater Process Technol 103(1):1–5. https://doi.org/10.1016/S0924-0136(00)00411-8

  24. Datta J (2001) Aluminium-Werkstoff-Datenblätter, 3rd edn. Aluminium-Verlag, Düsseldorf

  25. Stoll M (2018) Behavior of fiber-metal-elastomer-hybrid-laminates. Dissertation, Karlsruhe Institute of Technology (KIT), Institute of Applied Materials IAM-WK

Download references

Acknowledgments

The authors thank the Kraiburg Holding GmbH und Co. KG for providing the elastomer material in this study.

Funding

The research presented in this paper was kindly financed by the Baden-Württemberg Stiftungs project “Faser-Metall-Gummi-Hybridlaminate (FMGL) ein neuartiges, nachhaltiges Werkstoffkonzept für den Fahrzeugleichtbau”, support code MAT0012 of the research program “Rohstoff- und Materialeffzienz in der Produktion.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fleischer.

Additional information

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, S., Stoll, M., Weidenmann, K.A. et al. A new process route for the manufacturing of highly formed fiber-metal-laminates with elastomer interlayers (FMEL). Int J Adv Manuf Technol 104, 1293–1301 (2019). https://doi.org/10.1007/s00170-019-04103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04103-4

Keywords

Navigation