Skip to main content
Log in

Effect of polygon order on additively manufactured lattice structures: a method for defining the threshold resolution for lattice geometry

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Additive manufacture (AM) enables the fabrication of highly efficient lattice structures. However, the mathematical efficiency of characterising AM lattice geometry can be poor, potentially restricting the commercial application of AM lattice structures. This research quantifies the effect of the polygon order used to characterise the geometric resolution of lattice strut elements on the associated manufacturability and geometric qualities of the manufactured lattice. The effect of these design parameters on manufactured quality is experimentally determined for aluminium and titanium specimens fabricated by selective laser melting (SLM), although the method can be generally applied to any AM technology. This research finds that geometric thresholds exist, below which additional geometric resolution does not result in increased part quality. These thresholds are a function of material, lattice inclination angle, cross-sectional area and the polynomial order used to represent the cross section. These findings enable significantly reduced computational cost in managing AM lattice structures, and can be directly integrated with algorithmic methods for the optimisation of AM lattice structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ahn D, Kim H, Lee S (2009) Surface roughness prediction using measured data and interpolation in layered manufacturing. J Mater Process Technol 209(2):664–671

    Article  Google Scholar 

  2. ASTM standard F2792-12a, D (2012) F2792-12a. Standard terminology for additive manufacturing technologies. ASTM International, West Conshohocken

  3. Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162

    Article  Google Scholar 

  4. Brandt M, Sun SJ, Leary M, Feih S, Elambasseril J, Liu QC (2013) High-value SLM aerospace components: from design to manufacture. Adv Mater Res 633:135–147

    Article  Google Scholar 

  5. Clijsters S, Craeghs T, Buls S, Kempen K, Kruth JP (2014) In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol 75(5-8):1089–1101

    Article  Google Scholar 

  6. Croft HT (1991) Unsolved problems in geometry: unsolved problems in intuitive mathematics. Springer New York, New York

    Book  Google Scholar 

  7. Drizo A, Pegna J (2006) Environmental impacts of rapid prototyping: an overview of research to date. Rapid Prototyp J 12(2):64–71

    Article  Google Scholar 

  8. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928

    Article  Google Scholar 

  9. Gebhardt A, Schmidt F-M, Hötter J-S, Sokalla W, Sokalla P (2010) Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Phys Procedia 5:543–549

    Article  Google Scholar 

  10. Gibson R, Stucker (2010) Additive manufacturing technologies - rapid prototyping to direct digital manufacturing

    Chapter  Google Scholar 

  11. Gibson I, Rosen D, Stucker B (2015) Powder Bed Fusion Processes, in Additive Manufacturing Technologies. Springer pp 107–145

  12. Hiller JD, Lipson H (2009) STL 2.0: a proposal for a universal multi-material additive manufacturing file format. In: Proceedings of the Solid Freeform Fabrication Symposium

  13. ISO/ASTM (2015) Additive manufacturing — general principles — terminology. 52900. ISO/ASTM, Geneva 52900

    Google Scholar 

  14. ISO/ASTM (2016) Standard specification for additive manufacturing file format (AMF) version 1.2

  15. Jywe W-Y, Liu C-H, Chen C o-K (1999) The min–max problem for evaluating the form error of a circle. Measurement 26(4):273–282

    Article  Google Scholar 

  16. Leary M, Babaee M, Brandt M, Subic A (2013) Feasible build orientations for self-supporting fused deposition manufacture: a novel approach to space-filling tesselated geometries. Adv Mater Res 633:148–168

    Article  Google Scholar 

  17. Ma D, Lin F, Chua CK (2001) Rapid prototyping applications in medicine. Part 2: STL file generation and case studies. Int J Adv Manuf Technol 18:118–127

    Article  Google Scholar 

  18. Mani K, Kulkarni P, Dutta D (1999) Region-based adaptive slicing . Computer-Aided Design 31: 317–333

    Article  Google Scholar 

  19. Marcu T, Todea M, Gligor I, Berce P, Popa C (2012) Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications. Appl Surf Sci 258(7):3276–3282

    Article  Google Scholar 

  20. Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84:1391–1411

  21. Mazur M, Leary M, McMillan M, Elambasseril J, Brandt M (2016a) SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J 22(3):504–518

    Article  Google Scholar 

  22. Mazur M, Leary M, McMillan M, Sun S, Shidid D, Brandt M (2016b) Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM). Laser Additive Manufacturing: Materials, Design, Technologies, and Applications: 119–161

    Chapter  Google Scholar 

  23. Mazur M, Brincat P, Leary M, Brandt M (2017) Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int J Adv Manuf Technol:1–20

  24. McMillan ML, Jurg M, Leary M, Brandt M (2017a) Programmatic generation of computationally efficient lattice structures for additive manufacture. Rapid Prototyp J 23(3):486–494

    Article  Google Scholar 

  25. McMillan M, Leary M, Brandt M (2017b) Computationally efficient finite difference method for metal additive manufacturing: a reduced-order DFAM tool applied to SLM. Mater Des 132:226–243

    Article  Google Scholar 

  26. Promoppatum P, Onler R, Yao S-C (2017) Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. J Mater Process Technol 240:262–273

    Article  Google Scholar 

  27. Sexton L, Lavin S, Byrne G, Kennedy A (2002) Laser cladding of aerospace materials. J Mater Process Technol 122(1):63–68

    Article  Google Scholar 

  28. Shidid D, Leary M, Choong P, Brandt M (2016) Just-in-time design and additive manufacture of patient-specific medical implants. Phys Procedia 83:4–14

    Article  Google Scholar 

  29. Strano G, Hao L, Everson RM, Evans KE (2013) Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol 213(4):589–597

    Article  Google Scholar 

  30. Vaithilingam J, Kilsby S, Goodridge RD, Christie SD, Edmondson S, Hague RJ (2015) Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound. Mater Sci Eng C Mater Biol Appl 46:52–61

    Article  Google Scholar 

  31. Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203

    Article  Google Scholar 

  32. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141

    Article  Google Scholar 

  33. Williams CB, Cochran JK, Rosen DW (2010) Additive manufacturing of metallic cellular materials via three-dimensional printing. Int J Adv Manuf Technol 53(1-4):231–239

    Article  Google Scholar 

  34. Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:1–10

    Article  Google Scholar 

  35. Zhai Y, Lados DA, LaGoy JL (2014) Additive manufacturing: making imagination the major limitation. Jom 66(5):808–816

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge use of facilities within the RMIT Advanced Manufacturing Precinct and the RMIT Microscopy and Microanalysis Facility. This research was conducted by the Australian Research Council Industrial Transformation Training Centre in Additive Biomanufacturing (IC160100026) http:// www.additivebiomanufacturing.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Leary.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghamdi, A., Lozanovski, B., McMillan, M. et al. Effect of polygon order on additively manufactured lattice structures: a method for defining the threshold resolution for lattice geometry. Int J Adv Manuf Technol 105, 2501–2511 (2019). https://doi.org/10.1007/s00170-019-04168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04168-1

Keywords

Navigation