Skip to main content
Log in

Investigation of weld defects, microstructural, and mechanical features of TWIP and austenitic stainless steel dissimilar joints by pulsed GTAW process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The herein study investigated defects, microstructure, and mechanical properties of two dissimilar welded joints between a twinning induced plasticity (TWIP) steel and the austenitic stainless steel (ASS) of grade AISI 304L. Dissimilar two-pass welded joints were performed through the pulsed gas tungsten arc welding (GTAW-P) process. Weld defects were characterized through radiographic testing, light optical (LOM), and scanning electron microscopy (SEM). Discontinuities (lack of fusion) formed in autogenous and filler metal joints were associated with distortion and uneven heat input distribution. Macrographs and radiograms of weld bead cross-section revealed that discontinuities were linear (in the autogenous weld) and rounded (in filler metal weld). The linear discontinuity induced hot cracking in the fusion zone (FZ). The energy-dispersive X-ray spectroscopy (EDS) line scanning performed on both dissimilar weldments indicated that the element diffusion process was produced from the base material (BM) to the FZ. The mechanical characterization demonstrated that the dissimilar welded joint with filler metal (ER309L-Si) had higher mechanical properties than the autogenous one. The Si addition to the welded metal and the heterogeneous grain size distribution in the TWIP steel side contributed to enhancing the mechanical strength and elongation to fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Fang Y, Jiang X, Mo D, Zhu D, Luo Z (2019) A review on dissimilar metals’ welding methods and mechanisms with interlayer. Int J Adv Manuf Tech 102(9):2845–2863. https://doi.org/10.1007/s00170-019-03353-6

    Article  Google Scholar 

  2. Spena PR, Angelastro A, Casalino G (2019) Hybrid laser arc welding of dissimilar TWIP and DP high strength steel weld. J Manuf Process 39:233–240. https://doi.org/10.1016/j.jmapro.2019.02.025

    Article  Google Scholar 

  3. Casalino G, Angelastro A, Perulli P, Posa P, Spena PR (2019) Fiber laser-MAG hybrid welding of DP/AISI 316 and TWIP/AISI 316 dissimilar weld. Procedia CIRP 79:153–158. https://doi.org/10.1016/j.procir.2019.02.035

    Article  Google Scholar 

  4. Sun Z, Karppi R (1996) The application of electron beam welding for the joining of dissimilar metals: an overview. J Mater Process Tech 59(3):257–267. https://doi.org/10.1016/0924-0136(95)02150-7

    Article  Google Scholar 

  5. Halbauer L, Laubstein R, Radajewski M, Buchwalder A, Krüger L, Biermann H (2019) Electron beam welding and characterization of dissimilar joints with TWIP matrix composites. Adv Eng Mater 21(5):1800586. https://doi.org/10.1002/adem.201800586

    Article  Google Scholar 

  6. Viswanathan R (1985) Dissimilar metal weld and boiler creep damage evaluation for plant life extension. J Press Vessel Technol 107:218–225

    Article  Google Scholar 

  7. Mohammadi A, Koyama M, Gerstein G, Maier HJ, Noguchi H (2018) Hydrogen-assisted failure in a bimodal twinning-induced plasticity steel: delamination events and damage evolution. Int J Hydrogen Energ 43(4):2492–2502. https://doi.org/10.1016/j.ijhydene.2017.11.177

    Article  Google Scholar 

  8. Chen L, Zhao Y, Qin X (2013) Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review. Acta Metall Sin-Engl 26(1):1–15. https://doi.org/10.1007/s40195-012-0501-x

    Article  Google Scholar 

  9. Halbauer L, Buchwalder A, Zenker R, Biermann H (2016) The influence of dilution on dissimilar weld joints with high-alloy TRIP/TWIP steels. Weld World 60(4):645–652. https://doi.org/10.1007/s40194-016-0324-x

    Article  Google Scholar 

  10. Angelastro A, Casalino G, Perulli P, Spena PR (2018) Weldability of TWIP and DP steel dissimilar joint by laser arc hybrid welding with austenitic filler. Procedia CIRP 67:607–611. https://doi.org/10.1016/j.procir.2018.05.001

    Article  Google Scholar 

  11. Mujica L, Weber S, Pinto H, Thomy C, Vollertsen F (2010) Microstructure and mechanical properties of laser-welded joints of TWIP and TRIP steels. Mater Sci Eng A 527(7–8):2071–2078. https://doi.org/10.1016/j.msea.2009.11.050

    Article  Google Scholar 

  12. Májlinger K, Kalácska E, Spena PR (2016) Gas metal arc welding of dissimilar AHSS sheets. Mater Des 109:615–621. https://doi.org/10.1016/j.matdes.2016.07.084

    Article  Google Scholar 

  13. Keil D, Zinke M, Pries H (2011) Weldability of novel Fe-Mn high-strength steels for automotive applications. Weld World 55(11):21–30. https://doi.org/10.1007/BF03321539

    Article  Google Scholar 

  14. Yousefieh M, Shamanian M, Saatchi A (2011) Influence of heat input in pulsed current GTAW process on microstructure and corrosion resistance of duplex stainless steel welds. J Iron Steel Res Int 18(9):65–69. https://doi.org/10.1016/S1006-706X(12)60036-3

    Article  Google Scholar 

  15. García-García V, Ruiz-León F, Reyes-Calderón F, Garnica-González P, Mondragón-Sánchez ML (2021) Improvement of mechanical strength of a hot-worked twinning-induced plasticity steel through an optimum secondary annealing treatment. J Mater Eng Perform. https://doi.org/10.1007/s11665-021-05701-8

    Article  Google Scholar 

  16. Boaretto N, Centeno TM (2017) Automated detection of welding defects in pipelines from radiographic images DWDI. Ndt E Int 86:7–13. https://doi.org/10.1016/j.ndteint.2016.11.003

    Article  Google Scholar 

  17. García-García V, Mejía I, Reyes-Calderón F (2018) Comparative study on weldability of Ti-containing TWIP and AISI 304L austenitic steels through the autogenous-GTAW process. Int J Adv Manuf Tech 98(9):2365–2376. https://doi.org/10.1007/s00170-018-2392-0

    Article  Google Scholar 

  18. García-García V, Mejía I, Reyes-Calderón F (2018) Experimental and FEM study of Ti-containing TWIP steel weldability. J Mater Process Tech 261:107–122. https://doi.org/10.1016/j.jmatprotec.2018.05.028

    Article  Google Scholar 

  19. Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels, 1st edn. Hoboken, New Jersey

    Google Scholar 

  20. Kumar S, Shahi AS (2016) Studies on metallurgical and impact toughness behavior of variably sensitized weld metal and heat affected zone of AISI 304L welds. Mater Des 89:399–412. https://doi.org/10.1016/j.matdes.2015.09.145

    Article  Google Scholar 

  21. Sireesha M, Shankar V, Albert SK, Sundaresan S (2000) Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800. Mater Sci Eng A 292(1):74–82. https://doi.org/10.1016/S0921-5093(00)00969-2

    Article  Google Scholar 

  22. Vijayanand VD, Kumar JG, Parida PK, Ganesan V, Laha K (2017) Studies on creep deformation and rupture behavior of 316LN SS multi-pass weld joints fabricated with two different electrode sizes. Metall Mater Trans A 48(2):706–721. https://doi.org/10.1007/s11661-016-3862-3

    Article  Google Scholar 

  23. Zuidema BK, Subramanyam DK, Leslie WC (1987) The effect of aluminum on the work hardening and wear resistance of Hadfield manganese steel. Metall Trans A 18(9):1629–1639. https://doi.org/10.1007/BF02646146

    Article  Google Scholar 

  24. Marashi P, Pouranvari M, Amirabdollahian S, Abedi A, Goodarzi M (2008) Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels. Mater Sci Eng A 480(1–2):175–180. https://doi.org/10.1016/j.msea.2007.07.007

    Article  Google Scholar 

  25. Torkamany MJ, Sabbaghzadeh J, Hamedi MJ (2012) Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels. Mater Des 34:666–672. https://doi.org/10.1016/j.matdes.2011.05.024

    Article  Google Scholar 

  26. Ll Ma, Wei YH, Hou LL, Yan B (2014) Microstructure and mechanical properties of TWIP steel joints. J Iron Steel Res Int 21:749–756. https://doi.org/10.1016/S1006-706X(14)60137-0

    Article  Google Scholar 

  27. Kumar S, Shahi AS (2011) Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater Des 32(6):3617–3623. https://doi.org/10.1016/j.matdes.2011.02.017

    Article  Google Scholar 

  28. Roncery LM, Weber S, Theisen W (2012) Welding of twinning-induced plasticity steels. Scripta Mater 66(12):997–1001. https://doi.org/10.1016/j.scriptamat.2011.11.041

    Article  Google Scholar 

  29. Yoo J, Kim B, Park Y, Lee C (2015) Microstructural evolution and solidification cracking susceptibility of Fe–18Mn–0.6 C–x Al steel welds. J Mater Sci 50(1):279–286. https://doi.org/10.1007/s10853-014-8586-4

  30. Chen S, Rong L (2015) Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel. J Nucl Mater 459:13–19. https://doi.org/10.1016/j.jnucmat.2015.01.004

    Article  Google Scholar 

  31. Wang WF, Wu MJ (2006) Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC–Si stainless steels. Mater Sci Eng A 425(1–2):167–171. https://doi.org/10.1016/j.msea.2006.03.050

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-México) and the Tecnológico Nacional de México/Instituto Tecnológico de Morelia for support during the project. The present research project was financially supported by Tecnológico Nacional de México under project no. 7935.20-P. O.D Frasco-García and Víctor García’s studies were sponsored by the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-México) (N.B. 1008031 and 2019–000006-01NACV-00236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor García-García.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frasco-García, O.D., García-García, V., Reyes-Calderón, F. et al. Investigation of weld defects, microstructural, and mechanical features of TWIP and austenitic stainless steel dissimilar joints by pulsed GTAW process. Int J Adv Manuf Technol 119, 6371–6392 (2022). https://doi.org/10.1007/s00170-021-08543-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08543-9

Keywords

Navigation