Skip to main content
Log in

Heat flux in machining processes: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The models of temperature prediction in manufacturing processes have advanced considerably in the last decades, either by applying numerical methods or by the development of techniques and methods of temperature measurement, which feed and compare the results of models. Associated with the advancement of prediction models is the improvement in the analysis of heat generation and distribution during materials machining. This work presents state of the art in research related to heat flux estimation in metal cutting processes using direct and inverse methods, through analytical, numerical, and empirical models. Pioneering and current research approaching the problem of estimating heat flux, as the main focus or means to predict the temperature distribution during the process, are reviewed. Its particularities, such as boundary conditions, techniques used, and innovations concerning previous works, are discussed. Therefore, this paper will present and detail different methods to estimate the heat flux during machining, aiming to help researchers identify the advantages and limitations in several cases discussed. The heat flux estimation using inverse methods can be more accurate with the development of data acquisition systems, reducing errors in measured temperatures during the process. In addition, multiphysics numerical simulations characterizing plastic deformation and heat transfer can be improved to help estimate the heat generated in machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Abukhshim N, Mativenga P, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int J Mach Tools Manuf 46(7–8):782–800. https://doi.org/10.1016/j.ijmachtools.2005.07.024

    Article  Google Scholar 

  2. Rumford BC (1798) An inquiry concerning the source of the heat which is excited by friction. by benjamin count of rumford, frsmria. Philosophical Transactions of the Royal Society of London pp 80–102. https://doi.org/10.1098/rstl.1798.0006

  3. Taylor FW (1907) On the Art of Cutting Metals. American society of mechanical engineers, New York

    Google Scholar 

  4. Shore H (1925) Thermoelectric measurement of cutting tool temperatures. J Wash Acad Sci 15(5):85–88

    Google Scholar 

  5. Herbert EG (1926) The measurement of cutting temperatures. Proceedings of the Institution of Mechanical Engineers 110(1):289–329. https://doi.org/10.1243/PIME-PROC-1926-110-018-02

    Article  Google Scholar 

  6. Schallbroch H, Schaumann H, Wallichs R (1938) Testing for machinability by measuring cutting temperature and tool wear. Vartrage den Hamptversammlung pp 34–38

  7. Battaglia JL, Kusiak A (2005) Estimation of heat fluxes during high-speed drilling. Int J Adv Manuf Tech 26(7–8):750–758. https://doi.org/10.1007/s00170-003-2039-6

    Article  Google Scholar 

  8. Brito R, Carvalho S, Silva SLE (2015) Experimental investigation of thermal aspects in a cutting tool using comsol and inverse problem. Appl Therm Eng 86:60–68. https://doi.org/10.1016/j.applthermaleng.2015.03.083

    Article  Google Scholar 

  9. Komanduri R, Hou Z (2001) A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribol Int 34(10):653–682. https://doi.org/10.1016/S0301-679X(01)00068-8

    Article  Google Scholar 

  10. Deppermann M, Kneer R (2015) Determination of the heat flux to the workpiece during dry turning by inverse methods. Prod Eng Res Devel 9(4):465–471. https://doi.org/10.1007/s11740-015-0635-6

    Article  Google Scholar 

  11. Ferreira DC, dos Santos Magalhães E, Brito RF, Silva SMMLE (2018) Numerical analysis of the influence of coatings on a cutting tool using comsol. Int J Adv Manuf Tech 97(1–4):1305–1314. https://doi.org/10.1007/s00170-018-1855-7

    Article  Google Scholar 

  12. Kryzhanivskyy V, Bushlya V, Gutnichenko O, M’Saoubi R, Ståhl JE (2018) Heat flux in metal cutting: Experiment, model, and comparative analysis. Int J Mach Tools Manuf 134:81–97. https://doi.org/10.1016/j.ijmachtools.2018.07.002

    Article  Google Scholar 

  13. da Silva LRR, Favero Filho A, Costa ES, Pico DFM, Sales WF, Guesser WL, Machado AR (2018) Cutting temperatures in end milling of compacted graphite irons. Procedia Manufacturing 26:474–484. https://doi.org/10.1016/j.promfg.2018.07.056

    Article  Google Scholar 

  14. Storchak M, Stehle T, Möhring HC (2021) Determination of thermal material properties for the numerical simulation of cutting processes. Int J Adv Manuf Tech. https://doi.org/10.1007/s00170-021-08021-2

    Article  Google Scholar 

  15. Putz M, Schmidt G, Semmler U, Dix M, Bräunig M, Brockmann M, Gierlings S (2015) Heat flux in cutting: importance, simulation and validation. Procedia CIRP 31:334–339. https://doi.org/10.1016/j.procir.2015.04.088

    Article  Google Scholar 

  16. Jaeger JC (1942) Moving sources of heat and the temperature of sliding contacts. Proceedings of the royal society of New South Wales 76:203–224

    Google Scholar 

  17. Administration I, Group EPGAM, Boothroyd G (1963a) Temperatures in orthogonal metal cutting. Proceedings of the Institution of Mechanical Engineers 177(1):789–810. https://doi.org/10.1243/PIME-PROC-1963-177-05802

    Article  Google Scholar 

  18. Chao B, Trigger KJ (1956) Temperature distribution at tool-chip and tool-work interface in metal cutting. ASME

  19. Hahn RS (1951) On the temperature developed at the shear plane in the metalcutting process. In: J Appl Mecha-Trans of the ASME, ASME-AMER Soc Soc Mechanical Eng 345 E 47th St. New York, NY 10017, vol 18, pp 323–323

  20. Loewen E (1954) On the analysis of cutting-tool temperatures. Tras ASME 76:217

    Google Scholar 

  21. Rapier A (1954) A theoretical investigation of the temperature distribution in the metal cutting process. Br J Appl Phys 5(11):400. https://doi.org/10.1088/0508-3443/5/11/306

    Article  Google Scholar 

  22. Rosenthal D (1946) The theory of moving sources of heat and its application of metal treatments. Transactions of ASME 68:849–866

    Google Scholar 

  23. Trigger K (1951) An analytical evaluation of metal-cutting temperatures. Trans ASME 73:57

    Google Scholar 

  24. Watts RG (1969) Temperature distributions in solid and hollow cylinders due to a moving circumferential ring heat source. J Heat Transfer 91(4):465–470. https://doi.org/10.1115/1.3580228

    Article  Google Scholar 

  25. Arndt G, Brown R (1967) On the temperature distribution in orthogonal machining. International Journal of Machine Tool Design and Research 7(1):39–53. https://doi.org/10.1016/0020-7357(67)90024-8

    Article  Google Scholar 

  26. Chenwei S, Zhang X, Bin S, Zhang D (2019) An improved analytical model of cutting temperature in orthogonal cutting of ti6al4v. Chin J Aeronaut 32(3):759–769. https://doi.org/10.1016/j.cja.2018.12.001

    Article  Google Scholar 

  27. Di C, Dinghua Z, Baohai W, Ming L (2017) An investigation of temperature and heat partition on tool-chip interface in milling of difficult-to-machine materials. Procedia CIRP 58:49–54. https://doi.org/10.1016/j.procir.2017.03.180

    Article  Google Scholar 

  28. Jen TC, Anagonye AU (2001) An improved transient model of tool temperatures in metal cutting. J Manuf Sci Eng 123(1):30–37. https://doi.org/10.1115/1.1334865

    Article  Google Scholar 

  29. Yang D, Liu Y, Xie F, Xiao X (2019) Analytical investigation of workpiece internal energy generation in peripheral milling of titanium alloy ti-6al-4v. Int J Mech Sci 161:105063. https://doi.org/10.1016/j.ijmecsci.2019.105063

  30. Beck JV, Blackwell B, Clair CRS Jr (1985) Inverse heat conduction: Ill-posed problems. James Beck, New York

    MATH  Google Scholar 

  31. Junior JAS, Oliveira JRF, do Nascimento JG, Fernandes AP, Guimaraes G (2022) Simultaneous estimation of thermal properties via measurements using one active heating surface and bayesian inference. Int J Therm Sci 172:107304. https://doi.org/10.1016/j.ijthermalsci.2021.107304

  32. Malheiros FC, Figueiredo AA, Ignacio LHdS, Fernandes HC (2019) Estimation of thermal properties using only one surface by means of infrared thermography. Appl Therm Eng 157:113696. https://doi.org/10.1016/j.applthermaleng.2019.04.106

  33. Ozisik MN (2000) Inverse heat transfer: fundamentals and applications. CRC Press, New York

    Google Scholar 

  34. Tian N, Sun J, Xu W, Lai CH (2011) Estimation of unknown heat source function in inverse heat conduction problems using quantum-behaved particle swarm optimization. Int J Heat Mass Transf 54(17–18):4110–4116. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.061

    Article  MATH  Google Scholar 

  35. Wu TS, Lee HL, Chang WJ, Yang YC (2015) An inverse hyperbolic heat conduction problem in estimating pulse heat flux with a dual-phase-lag model. Int Commun Heat Mass Transfer 60:1–8. https://doi.org/10.1016/j.icheatmasstransfer.2014.11.002

    Article  Google Scholar 

  36. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. New York pp 1–30

  37. Dogu Y, Aslan E, Camuscu N (2006) A numerical model to determine temperature distribution in orthogonal metal cutting. J Mater Process Technol 171(1):1–9. https://doi.org/10.1016/j.jmatprotec.2005.05.019

    Article  Google Scholar 

  38. Battaglia JL, Batsale JC (2000) Estimation of heat flux and temperature in a tool during turning. Inverse problems in Engineering 8(5):435–456. https://doi.org/10.1080/174159700088027740

    Article  Google Scholar 

  39. Huang CH, Jan LC, Li R, Shih AJ (2007) A three-dimensional inverse problem in estimating the applied heat flux of a titanium drilling-theoretical and experimental studies. Int J Heat Mass Transf 50(17–18):3265–3277. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.031

    Article  MATH  Google Scholar 

  40. Jin T, Stephenson D (2006) Heat flux distributions and convective heat transfer in deep grinding. Int J Mach Tools Manuf 46(14):1862–1868. https://doi.org/10.1016/j.ijmachtools.2005.11.004

    Article  Google Scholar 

  41. Su G, Xiao X, Du J, Zhang J, Zhang P, Liu Z, Xu C (2020) On cutting temperatures in high and ultrahigh-speed machining. Int J Adv Manuf Tech 107(1):73–83, On cutting temperatures in high and ultrahigh-speed machining

  42. Yi J, Jin T, Zhou W, Deng Z (2020) Theoretical and experimental analysis of temperature distribution during full tooth groove form grinding. J Manuf Process 58:101–115. https://doi.org/10.1016/j.jmapro.2020.08.011

    Article  Google Scholar 

  43. Stephenson DA (1991) An inverse method for investigating deformation zone temperatures in metal cutting. J Eng Ind 113(2):129–136. https://doi.org/10.1115/1.2899669

    Article  Google Scholar 

  44. Kryzhanivskyy V, M’Saoubi R, Ståhl JE, Bushlya V (2019) Tool-chip thermal conductance coefficient and heat flux in machining: Theory, model and experiment. Int Mach Tools Manuf 147:103468, https://doi.org/10.1016/j.ijmachtools.2019.103468

  45. Battaglia JL (2002) A modal approach to solve inverse heat conduction problems. Inverse Problems in engineering 10(1):41–63. https://doi.org/10.1080/10682760290022537

    Article  Google Scholar 

  46. Fernandes AP, Santos MB, Guimaraes G (2015) An analytical transfer function method to solve inverse heat conduction problems. Appl Math Model 39(22):6897–6914. https://doi.org/10.1016/j.apm.2015.02.012

    Article  MathSciNet  MATH  Google Scholar 

  47. Kim HJ, Kim NK, Kwak JS (2006) Heat flux distribution model by sequential algorithm of inverse heat transfer for determining workpiece temperature in creep feed grinding. Int J Mach Tools Manuf 46(15):2086–2093. https://doi.org/10.1016/j.ijmachtools.2005.12.007

    Article  Google Scholar 

  48. Liang L, Xu H, Ke Z (2013) An improved three-dimensional inverse heat conduction procedure to determine the tool-chip interface temperature in dry turning. Int J Therm Sci 64:152–161. https://doi.org/10.1016/j.ijthermalsci.2012.08.012

    Article  Google Scholar 

  49. Lima FR, Machado AR, Guimarães G, Guths S (2000a) Numerical and experimental simulation for heat flux and cutting temperature estimation using three-dimensional inverse heat conduction technique. Inverse Problems in Engineering 8(6):553–577. https://doi.org/10.1080/174159700088027747

    Article  Google Scholar 

  50. Abouridouane M, Klocke F, Döbbeler B (2016) Analytical temperature prediction for cutting steel. CIRP Ann 65(1):77–80. https://doi.org/10.1016/j.cirp.2016.04.039

    Article  Google Scholar 

  51. Trent EM, Wright PK (2000) Metal cutting. Butterworth-Heinemann, New York

    Book  Google Scholar 

  52. Trent E (1988) Metal cutting and the tribology of seizure: Iii temperatures in metal cutting. Wear 128(1):65–81. https://doi.org/10.1016/0043-1648(88)90253-0

    Article  Google Scholar 

  53. Wallbank J (1979) Structure of built-up edge formed in metal cutting. Metals Technology 6(1):145–153. https://doi.org/10.1179/030716979803276426

    Article  Google Scholar 

  54. Artozoul J, Lescalier C, Bomont O, Dudzinski D (2014) Extended infrared thermography applied to orthogonal cutting: Mechanical and thermal aspects. Appl Therm Eng 64(1–2):441–452. https://doi.org/10.1016/j.applthermaleng.2013.12.057

    Article  Google Scholar 

  55. Fleischer J, Pabst R, Kelemen S (2007) Heat flow simulation for dry machining of power train castings. CIRP Ann 56(1):117–122. https://doi.org/10.1016/j.cirp.2007.05.030

    Article  Google Scholar 

  56. Kronenberg M (1966) Machining science and application. Pergamon Press

  57. Denkena B, Brüning J, Niederwestberg D, Grabowski R (2016) Influence of machining parameters on heat generation during milling of aluminum alloys. Procedia CIRP 46(46):39–42. https://doi.org/10.1016/j.procir.2016.03.192

    Article  Google Scholar 

  58. Ceretti E, Filice L, Umbrello D, Micari F (2007) Ale simulation of orthogonal cutting: a new approach to model heat transfer phenomena at the tool-chip interface. CIRP Ann 56(1):69–72. https://doi.org/10.1016/j.cirp.2007.05.019

    Article  Google Scholar 

  59. Carvalho S, e Silva SL, Machado A, Guimaraes G (2006) Temperature determination at the chip-tool interface using an inverse thermal model considering the tool and tool holder. J Mat Proc Tech 179(1–3):97–104. https://doi.org/10.1016/j.jmatprotec.2006.03.086

  60. Byrne G (1987) Thermoelectric signal characteristics and average interfacial temperatures in the machining of metals under geometrically defined conditions. Int J Mach Tools Manuf 27(2):215–224. https://doi.org/10.1016/S0890-6955(87)80051-2

    Article  Google Scholar 

  61. da Silva MB, Wallbank J (1999) Cutting temperature: prediction and measurement methods a review. J Mater Process Technol 88(1–3):195–202. https://doi.org/10.1016/S0924-0136(98)00395-1

    Article  Google Scholar 

  62. Braiden P (1968) The calibration of tool/work thermocouples. In: Advances in Machine Tool Design and Research 1967, Elsevier, New York, pp 653–666. https://doi.org/10.1016/B978-0-08-003491-1.50039-3

  63. Stephenson DA (1993) Tool-work thermocouple temperature measurements’ theory and implementation issues. J Eng Ind 115(4):432–437. https://doi.org/10.1115/1.2901786

    Article  Google Scholar 

  64. Lima HV, Campidelli AF, Maia AA, Abrão AM (2018) Temperature assessment when milling aisi d2 cold work die steel using tool-chip thermocouple, implanted thermocouple and finite element simulation. Appl Therm Eng 143:532–541. https://doi.org/10.1016/j.applthermaleng.2018.07.107

    Article  Google Scholar 

  65. Pereira IC, Vianello PI, Boing D, Guimarães G, Da Silva MB (2020) An approach to torque and temperature thread by thread on tapping. Int J Adv Manuf Tech 106(11):4891–4901. https://doi.org/10.1007/s00170-020-04986-8

    Article  Google Scholar 

  66. Santos M, Araujo Filho J, Barrozo M, Jackson M, Machado A (2017) Development and application of a temperature measurement device using the tool-workpiece thermocouple method in turning at high cutting speeds. Int J Adv Manuf Tech 89(5–8):2287–2298. https://doi.org/10.1007/s00170-016-9281-1

    Article  Google Scholar 

  67. Kaminise AK, Guimarães G, da Silva MB (2014) Development of a tool-work thermocouple calibration system with physical compensation to study the influence of tool-holder material on cutting temperature in machining. Int J Adv Manuf Tech 73(5–8):735–747. https://doi.org/10.1007/s00170-014-5898-0

    Article  Google Scholar 

  68. Chen G, Ren C, Zhang P, Cui K, Li Y (2013) Measurement and finite element simulation of micro-cutting temperatures of tool tip and workpiece. Int J Mach Tools Manuf 75:16–26. https://doi.org/10.1016/j.ijmachtools.2013.08.005

    Article  Google Scholar 

  69. Karaguzel U, Bakkal M, Budak E (2016) Modeling and measurement of cutting temperatures in milling. Procedia CIRP 46(1):173–176. https://doi.org/10.1016/j.procir.2016.03.182

    Article  Google Scholar 

  70. Basti A, Obikawa T, Shinozuka J (2007) Tools with built-in thin film thermocouple sensors for monitoring cutting temperature. Int J Mach Tools Manuf 47(5):793–798. https://doi.org/10.1016/j.ijmachtools.2006.09.007

    Article  Google Scholar 

  71. Biermann D, Kirschner M, Pantke K, Tillmann W, Herper J (2013) New coating systems for temperature monitoring in turning processes. Surf Coat Technol 215:376–380. https://doi.org/10.1016/j.surfcoat.2012.08.086

    Article  Google Scholar 

  72. Li J, Tao B, Huang S, Yin Z (2018) Built-in thin film thermocouples in surface textures of cemented carbide tools for cutting temperature measurement. Sens Actuators, A 279:663–670. https://doi.org/10.1016/j.sna.2018.07.017

    Article  Google Scholar 

  73. Li J, Tao B, Huang S, Yin Z (2019) Cutting tools embedded with thin film thermocouples vertically to the rake face for temperature measurement. Sens Actuators, A 296:392–399. https://doi.org/10.1016/j.sna.2019.07.043

    Article  Google Scholar 

  74. Sugita N, Ishii K, Furusho T, Harada K, Mitsuishi M (2015) Cutting temperature measurement by a micro-sensor array integrated on the rake face of a cutting tool. CIRP Ann 64(1):77–80. https://doi.org/10.1016/j.cirp.2015.04.079

    Article  Google Scholar 

  75. Kraemer G (1937) Beitrag zur erkenntnis der beim drehen auftretenden temperaturen und deren messung mit einem gesamtstrahlungsempfänger. PhD thesis, Technische Hochschule hannover

  76. Reichenbach G (1958) Experimental measurement of metal cutting temperature distribution. Trans ASME 80:525

    Google Scholar 

  77. Boothroyd G (1961) Photographic technique for the determination of metal cutting temperatures. Br J Appl Phys 12(5):238. https://doi.org/10.1088/0508-3443/12/5/307

    Article  Google Scholar 

  78. Trimm MW (2001) Introduction to infrared and thermal testing: Part 1 nondestructive testing. In: Maldague X, Moore PO (eds) Nondestructive Handbook, Infrared and Thermal Testing, vol 3, 3rd edn, The American Society for Nondestructive Testing - ASNT Press, Columbus, OH, pp 2–11

  79. Valiorgue F, Brosse A, Naisson P, Rech J, Hamdi H, Bergheau JM (2013) Emissivity calibration for temperatures measurement using thermography in the context of machining. Appl Therm Eng 58(1–2):321–326. https://doi.org/10.1016/j.applthermaleng.2013.03.051

    Article  Google Scholar 

  80. Arrazola PJ, Aristimuno P, Soler D, Childs T (2015) Metal cutting experiments and modelling for improved determination of chip/tool contact temperature by infrared thermography. CIRP Ann 64(1):57–60. https://doi.org/10.1016/j.cirp.2015.04.061

    Article  Google Scholar 

  81. Dewes R, Ng E, Chua K, Newton P, Aspinwall D (1999) Temperature measurement when high speed machining hardened mould/die steel. J Mater Process Technol 92:293–301. https://doi.org/10.1016/S0924-0136(99)00116-8

    Article  Google Scholar 

  82. Saez-de Buruaga M, Soler D, Aristimuño P, Esnaola J, Arrazola P (2018) Determining tool/chip temperatures from thermography measurements in metal cutting. Appl Therm Eng 145:305–314. https://doi.org/10.1016/j.applthermaleng.2018.09.051

    Article  Google Scholar 

  83. Hosseini S, Beno T, Klement U, Kaminski J, Ryttberg K (2014) Cutting temperatures during hard turning measurements and effects on white layer formation in aisi 52100. J Mater Process Technol 214(6):1293–1300. https://doi.org/10.1016/j.jmatprotec.2014.01.016

    Article  Google Scholar 

  84. Han J, Cao K, Xiao L, Tan X, Li T, Xu L, Tang Z, Liao G, Shi T (2020) In situ measurement of cutting edge temperature in turning using a near-infrared fiber-optic two-color pyrometer. Measurement 156:107597. https://doi.org/10.1016/j.measurement.2020.107595

  85. Saelzer J, Berger S, Iovkov I, Zabel A, Biermann D (2020) In-situ measurement of rake face temperatures in orthogonal cutting. CIRP Ann. https://doi.org/10.1016/j.cirp.2020.04.021

    Article  Google Scholar 

  86. Müller B, Renz U (2003) Time resolved temperature measurements in manufacturing. Measurement 34(4):363–370. https://doi.org/10.1016/j.measurement.2003.08.009

    Article  Google Scholar 

  87. Davies M, Ueda T, M’saoubi R, Mullany B, Cooke A (2007) On the measurement of temperature in material removal processes. CIRP Ann 56(2):581–604. https://doi.org/10.1016/j.cirp.2007.10.009

    Article  Google Scholar 

  88. Mzad H (2015) A simple mathematical procedure to estimate heat flux in machining using measured surface temperature with infrared laser. Case Studies in Thermal Engineering 6:128–135. https://doi.org/10.1016/j.csite.2015.09.001

    Article  Google Scholar 

  89. Arrazola P, Özel T, Umbrello D, Davies M, Jawahir I (2013) Recent advances in modelling of metal machining processes. CIRP Ann 62(2):695–718. https://doi.org/10.1016/j.cirp.2013.05.006

    Article  Google Scholar 

  90. Quinney H, Taylor GI (1937) The emission of the latent energy due to previous cold working when a metal is heated. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 163(913):157–181. https://doi.org/10.1098/rspa.1937.0217

    Article  Google Scholar 

  91. Bever M, Marshall E, Ticknor L (1953) The energy stored in metal chips during orthogonal cutting. J Appl Phys 24(9):1176–1179. https://doi.org/10.1063/1.1721466

    Article  Google Scholar 

  92. Radulescu R, Kapoor S (1994) An analytical model for prediction of tool temperature fields during continuous and interrupted cutting. J Eng Ind 10(1115/1):2901923

    Google Scholar 

  93. Altintas Y (2012) Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511843723

  94. Endres WJ, Sutherland J, DeVor R, Kapoor S (1990) Dynamic model of the cutting force system in the turning process. In: Winter Annual Meeting of the American Society of Mechanical Engineers

  95. Hastings W, Mathew P, Oxley P, Ford H (1980) A machining theory for predicting chip geometry, cutting forces etc. from work material properties and cutting conditions. Proceedings of the Royal Society of London A Mathematical and Physical Sciences 371(1747):569–587. https://doi.org/10.1098/rspa.1980.0097

  96. Strenkowski JS, Moon KJ (1990) Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting. J Eng Ind 10(1115/1):2899593

    Google Scholar 

  97. Moufki A, Molinari A, Dudzinski D (1998) Modelling of orthogonal cutting with a temperature dependent friction law. J Mech Phys Solids 46(10):2103–2138. https://doi.org/10.1016/S0022-5096(98)00032-5

    Article  MATH  Google Scholar 

  98. Ozlu E, Molinari A, Budak E (2010) Two-zone analytical contact model applied to orthogonal cutting. Mach Sci Technol 14(3):323–343. https://doi.org/10.1080/10910344.2010.512794

    Article  Google Scholar 

  99. Barzegar Z, Ozlu E (2021) Analytical prediction of cutting tool temperature distribution in orthogonal cutting including third deformation zone. J Manuf Process 67:325–344. https://doi.org/10.1016/j.jmapro.2021.05.003

    Article  Google Scholar 

  100. Möhring HC, Kushner V, Storchak M, Stehle T (2018) Temperature calculation in cutting zones. CIRP Ann 67(1):61–64. https://doi.org/10.1016/j.cirp.2018.03.009

    Article  Google Scholar 

  101. Kushner V, Storchak M (2017) Modelling the material resistance to cutting. Int J Mech Sci 126:44–54. https://doi.org/10.1016/j.ijmecsci.2017.03.024

    Article  Google Scholar 

  102. Shaw MC, Cookson J (2005) Metal cutting principles, vol 2. Oxford University Press, New York, Oxford

    Google Scholar 

  103. Administration I, Group EPGAM, Boothroyd G (1963b) Temperatures in orthogonal metal cutting. Proceedings of the Institution of Mechanical Engineers 177(1):789–810

    Article  Google Scholar 

  104. Reznikov A, Reznikov A (1981) Thermophysical aspects of metal cutting processes. Mashinostroenie, Moscow, p 212

    Google Scholar 

  105. Kato T, Fujii H (1999) Energy partition in conventional surface grinding. J Manuf Sci Eng 10(1115/1):2832694

    Google Scholar 

  106. Zhao J, Liu Z (2019) Modelling for prediction of time-varying heat partition coefficient at coated tool-chip interface in continuous turning and interrupted milling. Int J Mach Tools Manuf 147. https://doi.org/10.1016/j.ijmachtools.2019.103467

  107. Komanduri R, Hou ZB (2000a) Thermal modeling of the metal cutting process: part i-temperature rise distribution due to shear plane heat source. Int J Mech Sci 42(9):1715–1752. https://doi.org/10.1016/S0020-7403(99)00070-3

    Article  MATH  Google Scholar 

  108. Komanduri R, Hou ZB (2001b) Thermal modeling of the metal cutting process part ii: temperature rise distribution due to frictional heat source at the tool-chip interface. Int J Mech Sci 43(1):57–88. https://doi.org/10.1016/S0020-7403(99)00104-6

    Article  MATH  Google Scholar 

  109. Komanduri R, Hou ZB (2001c) Thermal modeling of the metal cutting process part iii: temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source. Int J Mech Sci 43(1):89–107. https://doi.org/10.1016/S0020-7403(99)00105-8

    Article  MATH  Google Scholar 

  110. Yin W, Duan C, Sun W, Wei B (2020) Analytical model of cutting temperature for workpiece surface layer during orthogonal cutting particle reinforced metal matrix composites. J Mater Process Technol 282:116643. https://doi.org/10.1016/j.jmatprotec.2020.116643

  111. Hu C, Zhuang K, Weng J, Pu D (2019) Three-dimensional analytical modeling of cutting temperature for round insert considering semi-infinite boundary and non-uniform heat partition. Int J Mech Sci 155:536–553. https://doi.org/10.1016/j.ijmecsci.2019.03.019

    Article  Google Scholar 

  112. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  113. Johnson W (1962) Some slip-line fields for swaging or expanding, indenting, extruding and machining for tools with curved dies. Int J Mech Sci 4(4):323–347. https://doi.org/10.1016/S0020-7403(62)80022-8

    Article  Google Scholar 

  114. Umbrello D, M’saoubi R, Outeiro J (2007) The influence of johnson-cook material constants on finite element simulation of machining of aisi 316l steel. Int J Mach Tools Manuf 47(3–4):462–470. https://doi.org/10.1016/j.ijmachtools.2006.06.006

    Article  Google Scholar 

  115. Haddag B, Kagnaya T, Nouari M, Cutard T (2013) A new heat transfer analysis in machining based on two steps of 3d finite element modelling and experimental validation. Heat Mass Transf 49(1):129–145. https://doi.org/10.1007/s00231-012-1069-8

    Article  Google Scholar 

  116. Zhang Y, Outeiro J, Mabrouki T (2015) On the selection of johnson-cook constitutive model parameters for ti-6al-4 v using three types of numerical models of orthogonal cutting. Procedia Cirp 31:112–117. https://doi.org/10.1016/j.procir.2015.03.052

    Article  Google Scholar 

  117. Klocke F, Lung D, Veselovac D, Buchkremer S (2015) An analytical model of the temperature distribution in the chip breakage location of metal cutting operations. Procedia CIRP 31:240–245. https://doi.org/10.1016/j.procir.2015.03.090

    Article  Google Scholar 

  118. Daoud M, Chatelain J, Bouzid A (2017) Effect of rake angle-based johnson-cook material constants on the prediction of residual stresses and temperatures induced in al2024-t3 machining. Int J Mech Sci 122:392–404. https://doi.org/10.1016/j.ijmecsci.2017.01.020

    Article  Google Scholar 

  119. Caudill J, Schoop J, Jawahir I (2019) Numerical modeling of cutting forces and temperature distribution in high speed cryogenic and flood-cooled milling of ti-6al-4v. Procedia CIRP 82:83–88. https://doi.org/10.1016/j.procir.2019.04.055

    Article  Google Scholar 

  120. Lin J (1995) Inverse estimation of the tool-work interface temperature in end milling. Int J Mach Tools Manuf 35(5):751–760. https://doi.org/10.1016/0890-6955(95)93043-6

    Article  Google Scholar 

  121. Battaglia JL (2005) Multiple heat fluxes estimation using the noninteger system identification approach: application on the milling process. Inverse Problems in Science and Engineering 13(1):1–22. https://doi.org/10.1080/1068276042000208581A

    Article  MathSciNet  MATH  Google Scholar 

  122. Samadi F, Kowsary F, Sarchami A (2012) Estimation of heat flux imposed on the rake face of a cutting tool: a nonlinear, complex geometry inverse heat conduction case study. Int Commun Heat Mass Transfer 39(2):298–303. https://doi.org/10.1016/j.icheatmasstransfer.2011.10.007

    Article  Google Scholar 

  123. Jiang F, Liu Z, Wan Y, Shi Z (2013) Analytical modeling and experimental investigation of tool and workpiece temperatures for interrupted cutting 1045 steel by inverse heat conduction method. J Mater Process Technol 213(6):887–894. https://doi.org/10.1016/j.jmatprotec.2013.01.004

    Article  Google Scholar 

  124. Norouzifard V, Hamedi M (2014) A three-dimensional heat conduction inverse procedure to investigate tool-chip thermal interaction in machining process. The International Journal of Advanced Manufacturing Technology 74(9–12):1637–1648. https://doi.org/10.1007/s00170-014-6119-6

    Article  Google Scholar 

  125. Huang S, Tao B, Li J, Fan Y, Yin Z (2018) On-line estimation of the tool-chip interface temperature field during turning using a sequential inverse method. Int J Adv Manuf Tech 97(1):939–952. https://doi.org/10.1007/s00170-018-1987-9

    Article  Google Scholar 

  126. Lima FR, Machado AR, Guimarães G, Guths S (2000b) Numerical and experimental simulation for heat flux and cutting temperature estimation using three-dimensional inverse heat conduction technique. Inverse Problems in Engineering 8(6):553–577. https://doi.org/10.1080/174159700088027747

    Article  Google Scholar 

  127. Luchesi VM, Coelho RT (2012) An inverse method to estimate the moving heat source in machining process. Appl Therm Eng 45:64–78. https://doi.org/10.1016/j.applthermaleng.2012.04.014

    Article  Google Scholar 

  128. Huang CH, Lo HC (2005) A three-dimensional inverse problem in predicting the heat fluxes distribution in the cutting tools. Numerical Heat Transfer, Part A: Applications 48(10):1009–1034. https://doi.org/10.1080/10407780500226530

    Article  Google Scholar 

  129. Yvonnet J, Umbrello D, Chinesta F, Micari F (2006) A simple inverse procedure to determine heat flux on the tool in orthogonal cutting. Int J Mach Tools Manuf 46(7–8):820–827. https://doi.org/10.1016/j.ijmachtools.2005.07.030

    Article  Google Scholar 

  130. Kryzhanivskyy V, Bushlya V, Gutnichenko O, M’Saoubi R, Ståhl JE (2017) Computational and experimental inverse problem approach for determination of time dependency of heat flux in metal cutting. Procedia CIRP 58:122–127. https://doi.org/10.1016/j.procir.2017.03.204

    Article  Google Scholar 

  131. Oliveira GC, Ribeiro SS, Guimaraes G (2021) An inverse procedure to estimate the heat flux at coated tool-chip interface: a 3d transient thermal model. Int J Adv Manuf Tech 112(11):3327–3341. https://doi.org/10.1007/s00170-020-06498-x

    Article  Google Scholar 

  132. Medeiros JC, Crichigno Filho JM (2020) A comparison of different heat flux density distribution models to predict the temperature in the drilling process. The International Journal of Advanced Manufacturing Technology 109(7):1997–2008. https://doi.org/10.1007/s00170-020-05720-0

    Article  Google Scholar 

  133. Yusup N, Zain AM, Hashim SZM (2012) Overview of pso for optimizing process parameters of machining. Procedia Engineering 29:914–923. https://doi.org/10.1016/j.proeng.2012.01.064

    Article  Google Scholar 

  134. Mukherjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Comp Ind Eng 50(1–2):15–34. https://doi.org/10.1016/j.cie.2005.10.001

    Article  Google Scholar 

  135. Deng S, Hwang Y (2006) Applying neural networks to the solution of forward and inverse heat conduction problems. Int J Heat Mass Transf 49(25–26):4732–4750. https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.009

    Article  MATH  Google Scholar 

  136. Gosselin L, Tye-Gingras M, Mathieu-Potvin F (2009) Review of utilization of genetic algorithms in heat transfer problems. Int J Heat Mass Transf 52(9–10):2169–2188. https://doi.org/10.1016/j.ijheatmasstransfer.2008.11.015

    Article  MATH  Google Scholar 

  137. Khan Z, Prasad B, Singh T (1997) Machining condition optimization by genetic algorithms and simulated annealing. Comp Oper Res 24(7):647–657. https://doi.org/10.1016/S0305-0548(96)00077-9

    Article  MATH  Google Scholar 

  138. Sivasakthivel P, Sudhakaran R (2013) Optimization of machining parameters on temperature rise in end milling of al 6063 using response surface methodology and genetic algorithm. Int J Adv Manuf Tech 67(9–12):2313–2323. https://doi.org/10.1007/s00170-012-4652-8

    Article  Google Scholar 

  139. Lu S, Heng Y, Mhamdi A (2012) A robust and fast algorithm for three-dimensional transient inverse heat conduction problems. Int J Heat Mass Transf 55(25–26):7865–7872. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.018

    Article  Google Scholar 

  140. Edalatifar M, Tavakoli MB, Ghalambaz M, Setoudeh F (2020) Using deep learning to learn physics of conduction heat transfer. J Therm Analysis Calorimetry pp 1–18. https://doi.org/10.1007/s10973-020-09875-6

Download references

Funding

The authors would like to thank the government agencies CAPES, CNPq, FAPEMA and FAPEMIG for their financial support of this project in the form of research grants and scholarships.

Author information

Authors and Affiliations

Authors

Contributions

Alisson Augusto Azevedo Figueiredo, Igor Cezar Pereira, and Gilmar Guimaraes were responsible for all steps of development of the work.

Corresponding author

Correspondence to Alisson A A Figueiredo.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Consent was obtained from all individual participants included in the work.

Consent for publication

This work described has not been published before and has not been under consideration for publication anywhere else.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, A.A.A., Guimaraes, G. & Pereira, I.C. Heat flux in machining processes: a review. Int J Adv Manuf Technol 120, 2827–2848 (2022). https://doi.org/10.1007/s00170-022-08720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08720-4

Keywords

Navigation