Skip to main content
Log in

Ultrasonic welding of fiber-reinforced thermoplastic composites: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ultrasonic welding is a special joining process with high joining speed and good joint strength. Compared with conventional mechanical and adhesive bonding, ultrasonic welding has many advantages for joining thermoplastic composite. In this paper, the latest advances in ultrasonic welding technology for fiber-reinforced thermoplastic composites were reviewed. This paper not only compares the advantages and disadvantages of the ultrasonic welding process with other welding methods but also discusses the influence of ultrasonic welding parameters on the welding quality. The ultrasonic welding of dissimilar materials was summarized. In addition, the quality inspection and repair of ultrasonic composite welding were also discussed. Finally, the research status and development prospect of ultrasonic welding for thermoplastic composites were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Bhudolia SK, Gohel G, Leong KF, Islam A (2020) Advances in ultrasonic welding of thermoplastic composites: a review. Materials 13(6):1284. https://doi.org/10.3390/ma13061284

    Article  Google Scholar 

  2. Yang IY, Yang YJ, Park JW, Lee KS, Cho YT, Park JW, Hsu DK, Im KH (2008) Application of air-coupled ultrasonic techniques using carbon/carbon composites. Mater Sci Forum 580–582:121–124. https://doi.org/10.4028/www.scientific.net/MSF.580-582.121

    Article  Google Scholar 

  3. Stavrov D, Bersee HEN (2005) Resistance welding of thermoplastic composites—an overview. Compos A Appl Sci Manuf 36(1):39–54. https://doi.org/10.1016/j.compositesa.2004.06.030

    Article  Google Scholar 

  4. Benatar A, Gutowski TG (1989) Ultrasonic welding of thermoplastic composites, in: Annual Technical Conference - Society of Plastics Engineers 507–510

  5. Trunzo MSJ, Graham SM, Caton P (2012) Integration of carbon fiber composite materials into air-cooled reciorocating piston engines for UAV application. ASME International Mechanical Engineering Congress and Exposition. Proceedings (IMECE) 3:943–956. https://doi.org/10.1115/IMECE2012-87607

    Article  Google Scholar 

  6. Das B, Masters W (2019) Comparison of tab-to-busbar ultrasonic joints for electric vehicle li-ion battery applications. World Electric Vehicle Journal 10(3):55. https://doi.org/10.3390/wevj10030055

    Article  Google Scholar 

  7. Atmakuri A, Palevicius A, Vilkauskas A, Janusas G (2020) Review of hybrid fiber based composites with nano particles-material properties and applications. Polymers (Basel) 12(9). https://doi.org/10.3390/polym12092088

  8. Yassin K, Hojjati M (2018) Processing of thermoplastic matrix composites through automated fiber placement and tape laying methods: a review. J Thermoplast Compos Mater 31(12):1676–1725. https://doi.org/10.1177/0892705717738305

    Article  Google Scholar 

  9. Dobrota D, Lazar SV (2021) Ultrasonic welding of PBT-GF30 (70% polybutylene terephthalate + 30% fiber glass) and expanded polytetrafluoroethylene (e-PTFE). Polymers (Basel) 13(2):298. https://doi.org/10.3390/polym13020298

    Article  Google Scholar 

  10. Bhudolia SK, Perrotey P, Joshi SC (2017) Enhanced vibration damping and dynamic mechanical characteristics of composites with novel pseudo-thermoset matrix system. Compos Struct 179:502–513. https://doi.org/10.1016/j.compstruct.2017.07.093

    Article  Google Scholar 

  11. Yousefpour A, Hojjati M, Immarigeon J-P (2016) Fusion bonding/welding of thermoplastic composites. J Thermoplast Compos Mater 17(4):303–341. https://doi.org/10.1177/0892705704045187

    Article  Google Scholar 

  12. Gouin O’Shaughnessey P, Dubé M, Fernandez Villegas I (2016) Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes. J Compos Mater 50(21):2895–2910. https://doi.org/10.1177/0021998315614991

    Article  Google Scholar 

  13. Rao Z, Ou L, Wang Y, Wang P-C (2020) A self-piercing-through riveting method for joining of discontinuous carbon fiber reinforced nylon 6 composite. Compos Struct 237:111841. https://doi.org/10.1016/j.compstruct.2019.111841

    Article  Google Scholar 

  14. Wang J, Zhang G, Zheng X, Li J, Li X, Zhu W, Yanagimoto J (2021) A self-piercing riveting method for joining of continuous carbon fiber reinforced composite and aluminum alloy sheets. Compos Struct 259:113219. https://doi.org/10.1016/j.compstruct.2020.113219

    Article  Google Scholar 

  15. Pizzorni M, Parmiggiani A, Prato M (2021) Adhesive bonding of a mixed short and continuous carbon-fiber-reinforced nylon-6 composite made via fused filament fabrication. Int J Adhes Adhes 107:102856. https://doi.org/10.1016/j.ijadhadh.2021.102856

    Article  Google Scholar 

  16. Sun H, Kosukegawa H, Hashimoto M, Uchimoto T, Takagi T (2020) Electromagnetic-pulse-induced acoustic testing for nondestructive testing of plastic composite/metal adhesive bonding. Int J Hydrogen Energy 45(55):31303–31314. https://doi.org/10.1016/j.ijhydene.2020.08.079

    Article  Google Scholar 

  17. Ecault R, Touchard F, Berthe L, Boustie M (2020) Laser shock adhesion test numerical optimization for composite bonding assessment. Compos Struct 247:112441. https://doi.org/10.1016/j.compstruct.2020.112441

    Article  Google Scholar 

  18. Mandolfino C, Lertora E, Gambaro C (2017) Influence of cold plasma treatment parameters on the mechanical properties of polyamide homogeneous bonded joints. Surf Coat Technol 313:222–229. https://doi.org/10.1016/j.surfcoat.2017.01.071

    Article  Google Scholar 

  19. Gouveia D, Razzoog ME, Sierraalta M, Alfaro MF (2021) Effect of surface treatment and manufacturing process on the shear bond strength of veneering composite resin to polyetherketoneketone (PEKK) and polyetheretherketone (PEEK). J Prosthet Dent 3:10–16. https://doi.org/10.1016/j.prosdent.2021.02.003

    Article  Google Scholar 

  20. Staab F, Liesegang M, Balle F (2020) Local shear strength distribution of ultrasonically welded hybrid aluminium to CFRP joints. Compos Struct 248:112481. https://doi.org/10.1016/j.compstruct.2020.112481

    Article  Google Scholar 

  21. Qiu J, Zhang G, Sakai E, Liu W, Zang L (2020) Thermal welding by the third phase between polymers: a review for ultrasonic weld technology developments. Polymers (Basel) 12(4):759. https://doi.org/10.3390/polym12040759

    Article  Google Scholar 

  22. Greitmann MJ, Adam T, Holzweißig MHG, Stroh D, Wagner G, Wiesner P, Zust R (2003) Present status and future prospects of special welding processes—ultrasonic welding. Weld Cut 55(5):268–274

    Google Scholar 

  23. Palardy G, Villegas IF (2016) Smart ultrasonic welding of thermoplastic composites, in: Proceedings of the American Society for Composites - 31st Technical Conference, ASC

  24. Wagner G, Balle F, Eifler D (2012) Ultrasonic welding of hybrid joints Jom 64(3):401–406. https://doi.org/10.1007/s11837-012-0269-5

    Article  Google Scholar 

  25. Villegas IF, Moser L, Yousefpour A, Mitschang P, Bersee HEN (2012) Process and performance evaluation of ultrasonic, induction and resistance welding of advanced thermoplastic composites. J Thermoplast Compos Mater 26(8):1007–1024. https://doi.org/10.1177/0892705712456031

    Article  Google Scholar 

  26. Kumar S, Wu CS, Padhy GK, Ding W (2017) Application of ultrasonic vibrations in welding and metal processing: A status review. J Manuf Process 26:295–322. https://doi.org/10.1016/j.jmapro.2017.02.027

    Article  Google Scholar 

  27. Levy A, Le Corre S, Poitou A (2012) Ultrasonic welding of thermoplastic composites: a numerical analysis at the mesoscopic scale relating processing parameters, flow of polymer and quality of adhesion. IntJ Mater Form 7(1):39–51. https://doi.org/10.1007/s12289-012-1107-6

    Article  Google Scholar 

  28. Cui X, Tian L, Wang DS, Dong JP (2021) Summary of thermosetting composite material welding. J Phys: Conf Ser 1765:012021. https://doi.org/10.1088/1742-6596/1765/1/012021

    Article  Google Scholar 

  29. Dold C, Henerichs M, Bochmann L, Wegener K (2012) Comparison of ground and laser machined polycrystalline diamond (PCD) tools in cutting carbon fiber reinforced plastics (CFRP) for aircraft structures. Procedia CIRP 1:178–183. https://doi.org/10.1016/j.procir.2012.04.031

    Article  Google Scholar 

  30. Matteucci M, Heiskanen A, Zor K, Emneus J, Taboryski R (2016) Comparison of ultrasonic welding and thermal bonding for the Integration of thin film metal electrodes in injection molded polymeric lab-on-chip systems for electrochemistry. Sensors (Basel) 16(11):1795. https://doi.org/10.3390/s16111795

    Article  Google Scholar 

  31. Ni ZL, Wang XX, Li S, Ye FX (2019) Mechanical strength enhancement of ultrasonic metal welded Cu/Cu joint by Cu nanoparticles interlayer. J Manuf Process 38:88–92. https://doi.org/10.1016/j.jmapro.2019.01.014

    Article  Google Scholar 

  32. Yang J, Zhang J, Qiao J (2019) Molecular dynamics simulations of atomic diffusion during the Al-Cu ultrasonic welding process. Materials (Basel) 12(14):2306. https://doi.org/10.3390/ma12142306

    Article  Google Scholar 

  33. Wirth E, Sabantina L, Weber MO, Finsterbusch K, Ehrmann A (2018) Preliminary study of ultrasonic welding as a joining process for electrospun nanofiber mats. Nanomaterials (Basel) 8(10):746. https://doi.org/10.3390/nano8100746

    Article  Google Scholar 

  34. Benatar A, Eswaran RV, Nayar SK (1989) Ultrasonic welding of thermoplastics in the near-field. Polym Eng Sci 29(23):1689–1698. https://doi.org/10.1002/pen.760292311

    Article  Google Scholar 

  35. Balle F, Wagner G, Eifler D (2009) Ultrasonic metal welding of aluminium sheets to carbon fibre reinforced thermoplastic composites. Adv Eng Mater 11(1–2):35–39. https://doi.org/10.1002/adem.200800271

    Article  Google Scholar 

  36. Ni ZL, Yang JJ, Li S, Wang XX, Ye FX (2019) A review on ultrasonic spot welding of copper alloys. Mater Sci Technol 36(3):264–283. https://doi.org/10.1080/02670836.2019.1705590

    Article  Google Scholar 

  37. Kim J, Kim J, Kim I-j, Kang S, Chun K (2019) An analysis of mechanical properties for ultrasonically welded multiple C1220-Al1050 layers. Appl Sci 9(19):4188. https://doi.org/10.3390/app9194188

    Article  Google Scholar 

  38. Li H, Cao B (2019) Microstructure and mechanical properties of resistance heat-assisted high-power ultrasonic dissimilar welded Cu/Al joint. Metals 9(8). https://doi.org/10.3390/met9080873

  39. Zhang W, Ao S, Oliveira JP, Zeng Z, Huang Y, Luo Z (2018) Microstructural characterization and mechanical behavior of NiTi shape memory alloys ultrasonic joints using Cu interlayer. Materials 11(10). https://doi.org/10.3390/ma11101830

  40. Kim JH, Jihye L, Yoo CD (2005) Soldering method using longitudinal ultrasonic. IEEE Trans Compon Packag Technol 28(3):493–498. https://doi.org/10.1109/tcapt.2005.848576

    Article  Google Scholar 

  41. Kumar P, Prakasan K (2018) Acoustic horn design for joining metallic wire with flat metallic sheet by ultrasonic vibrations. Journal of Vibroengineering 20(7):2758–2770. https://doi.org/10.21595/jve.2018.19648

  42. Yusuf L, Symes MD, Prentice P (2021) Characterising the cavitation activity generated by an ultrasonic horn at varying tip-vibration amplitudes. Ultrason Sonochem 70. https://doi.org/10.1016/j.ultsonch.2020.105273

  43. Xiping H, Xiaojuan C, Yanjun W, Jingfeng N (2019) A high displacement ultrasonic horn with a cuboid hole in the front end, in: Proceedings of 2019 16th International Bhurban Conference on Applied Sciences and Technology IBCAST 873–879

  44. Jongbloed B, Teuwen J, Palardy G, Fernandez Villegas I, Benedictus R (2019) Continuous ultrasonic welding of thermoplastic composites: Enhancing the weld uniformity by changing the energy director. J Compos Mater 54(15):2023–2035. https://doi.org/10.1177/0021998319890405

    Article  Google Scholar 

  45. Shimada STH, Hasebe K, Hayashi N, Ochi Y, Matsui T, Nishizaki I, Matsumoto Y, Tanaka Y, Nakamura H, Mizuno Y, Nakamura K (2016) Ultrasonic welding of polymer optical fibres onto composite materials. Electron Lett 52(17):1472–1474. https://doi.org/10.1049/el.2016.0905

    Article  Google Scholar 

  46. Peng H, Jiang X, Bai X, Li D, Chen D (2018) Microstructure and mechanical properties of ultrasonic spot welded Mg/Al alloy dissimilar joints. Metals 8(4):229. https://doi.org/10.3390/met8040229

    Article  Google Scholar 

  47. Shah U, Liu X (2020) Effect of ultrasonic energy on the spot weldability of aluminum alloy AA6061. Mater Des 192:108690. https://doi.org/10.1016/j.matdes.2020.108690

    Article  Google Scholar 

  48. Gu X, Liu D, Liu J (2018) Effect of post-weld heat treatment on the dissimilar Cu/Al joints pro-duced by high power ultrasonic spot welding. ISIJ Int 58(9):1721–1726. https://doi.org/10.2355/isijinternational.ISIJINT-2017-694

    Article  Google Scholar 

  49. Yao Y, Pan Y, Liu S (2020) Power ultrasound and its applications: A state-of-the-art review. Ultrason Sonochem 62:104722. https://doi.org/10.1016/j.ultsonch.2019.104722

    Article  Google Scholar 

  50. Zhao T, Zhao Q, Wu W, Xi L, Li Y, Wan Z, Villegas IF, Benedictus R (2021) Enhancing weld attributes in ultrasonic spot welding of carbon fibre-reinforced thermoplastic composites: Effect of sonotrode configurations and process control. Compos B Eng 211:108648. https://doi.org/10.1016/j.compositesb.2021.108648

    Article  Google Scholar 

  51. Wang DJ, Jiang JJ, Duan FJ, Zhang, Liu W, FM, Qu XH (2020) A novel fast resonance frequency tracking method based on the admittance circle for ultrasonic transducers. IEEE Trans Industr Electron 67(8):6864–6873. https://doi.org/10.1109/tie.2019.2938476

    Article  Google Scholar 

  52. Gandomzadeh D, Abbaspour-Fard MH (2020) Numerical study of the effect of core geometry on the performance of a magnetostrictive transducer. J Magn Magn Mater 513:166823. https://doi.org/10.1016/j.jmmm.2020.166823

    Article  Google Scholar 

  53. Wang P, Zhang Y, Yao E, Mi Y, Zheng Y, Tang C (2021) Method of measuring the mechanical properties of ferromagnetic materials based on magnetostrictive EMAT characteristic parameters. Measurement: Journal of the International Measurement Confederation 168. https://doi.org/10.1016/j.measurement.2020.108187

  54. Hajati A, Latev D, Gardner D, Hajati A, Imai D, Torrey M, Schoeppler M (2012) Three-dimensional micro electromechanical system piezoelectric ultrasound transducer. Appl Phys Lett 101(25):253101. https://doi.org/10.1063/1.4772469

    Article  Google Scholar 

  55. Jamshidi R, Jafari AA (2021) Conical shell vibration control with distributed piezoelectric sensor and actuator layer. Compos Struct 256. https://doi.org/10.1016/j.compstruct.2020.113107

  56. Nedeloni MD, Hatiegan C, Vasile O, Hamat CO, Fanica C, Gillich N (2015) Numerical study regarding the influence of material components for a booster—ultrasonic horn assembly on the natural frequency. Romanian Journal of Acoustics and Vibration 12(2):155–160

    Google Scholar 

  57. Harras B, Benamar R, White RG (2002) Investigation of non-linear free vibrations of fully clamped symmetrically laminated carbon-fibre-reinforced PEEK (AS4/APC2) rectangular composite panels. Compos Sci Technol 62:719–727

    Article  Google Scholar 

  58. Ageorges C, Ye L (2002) Fusion bonding of polymer composites. Engineering materials and processes 978–1087. https://doi.org/10.1007/978-1-4471-0171-0

  59. Zhen Y, Fu Y, Li H, Cao Z, Chen Y (2004) Mathematical modeling and experimental verification of a novel single-actuated ultrasonic elliptical vibrator. J Thermoplast Compos Mater 17(1):51. https://doi.org/10.1177/1687814017745413

    Article  Google Scholar 

  60. Kuratani F, Miyano S, Yoshida T, Washio S (2019) Effect of contact area with fixture on dynamic behaviour of joint interface in ultrasonic welding of thermoplastics, in: J Phys Conf Ser 012047

  61. Tsiangou E, de Freitas ST, Villegas IF, Benedictus R (2019) Investigation on energy director-less ultrasonic welding of polyetherimide (PEI)- to epoxy-based composites. Compos B Eng 173:107014. https://doi.org/10.1016/j.compositesb.2019.107014

    Article  Google Scholar 

  62. Xu XF, Bates PJ, Zak G (2015) Effect of glass fiber and crystallinity on light transmission during laser transmission welding of thermoplastics. Opt Laser Technol 69:133–139. https://doi.org/10.1016/j.optlastec.2014.12.025

    Article  Google Scholar 

  63. Samanta A, Xiao S, Shen N, Li J, Ding H (2019) Atomistic simulation of diffusion bonding of dissimilar materials undergoing ultrasonic welding. Int J Adv Manuf Technol 103(1–4):879–890. https://doi.org/10.1007/s00170-019-03582-9

    Article  Google Scholar 

  64. Pokhrel N, Vabbina PK, Pala N (2016) Sonochemistry: science and engineering. Ultrason Sonochem 29:2957. https://doi.org/10.1016/j.ultsonch.2015.07.023

    Article  Google Scholar 

  65. Zhang Z, Xiaodong W, Yi L, Zhenqiang Z, Liding W (2009) Study on heating process of ultrasonic welding for thermoplastics. J Thermoplast Compos Mater 23(5):647–664. https://doi.org/10.1177/0892705709356493

    Article  Google Scholar 

  66. Kohler F, Villegas IF, Dransfeld C, Herrmann A (2021) Static ultrasonic welding of carbon fibre unidirectional thermoplastic materials and the influence of heat generation and heat transfer. J Compos Mater 1:16. https://doi.org/10.1177/0021998320976818

  67. Tutunjian S, Dannemann M, Modler N, Kucher M, Fellermayer A (2020) A numerical analysis of the temporal and spatial temperature development during the ultrasonic spot welding of fibre-reinforced thermoplastics. J Manuf Mater Processing 4(2):30. https://doi.org/10.3390/jmmp4020030

    Article  Google Scholar 

  68. Bai Y, Chen Y (2020) Research on ultrasonic plastic flexible welding equipment for automobile steering wheel. In: 2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME). pp 264–269. https://doi.org/10.1109/ICEDME50972.2020.00067

  69. Wang K, Shriver D, Li Y, Banu M, Hu SJ, Xiao G, Arinez J, Fan H-T (2017) Characterization of weld attributes in ultrasonic welding of short carbon fiber reinforced thermoplastic composites. J Manuf Process 29:124–132. https://doi.org/10.1016/j.jmapro.2017.07.024

    Article  Google Scholar 

  70. Villegas IF, Bersee HEN (2010) Ultrasonic welding of advanced thermoplastic composites: An investigation on energy-directing surfaces. Adv Polym Technol 29(2):112–121. https://doi.org/10.1002/adv.20178

    Article  Google Scholar 

  71. Villegas IF, Palardy G (2017) Ultrasonic welding of CF/PPS composites with integrated triangular energy directors: melting, flow and weld strength development. Compos Interfaces 24(5):515–528. https://doi.org/10.1080/09276440.2017.1236626

    Article  Google Scholar 

  72. Bhudolia SK, Gohel G, Kantipudi J, Leong KF, Barsotti Jr RJ (2020) Ultrasonic welding of novel carbon/ elium® thermoplastic composites with flat and integrated energy directors: lap shear characterisation and fractographic investigation. Materials (Basel) 13(7):1634. https://doi.org/10.3390/ma13071634

    Article  Google Scholar 

  73. Gohel G, Bhudolia SK, Kantipudi J, Leong KF, Barsotti RJ (2020) Ultrasonic welding of novel carbon/elium® with carbon/epoxy composites. Composites Communications 22:100463. https://doi.org/10.1016/j.coco.2020.100463

    Article  Google Scholar 

  74. Kiss Z, Temesi T, Bitay E, Bárány T, Czigány T (2019) Ultrasonic welding of all‐polypropylene composites. J Appl Polym Sci 137(24). https://doi.org/10.1002/app.48799

  75. Villegas IF (2019) Ultrasonic welding of thermoplastic composites. Frontiers in Materials 6:291. https://doi.org/10.3389/fmats.2019.00291

    Article  Google Scholar 

  76. Villegas IF (2014) Strength development versus process data in ultrasonic welding of thermoplastic composites with flat energy directors and its application to the definition of optimum processing parameters. Compos A Appl Sci Manuf 65:27–37. https://doi.org/10.1016/j.compositesa.2014.05.019

    Article  Google Scholar 

  77. Tutunjian S, Dannemann M, Fischer F, Eroğlu O, Modler N (2018) A control method for the ultrasonic spot welding of fiber-reinforced thermoplastic laminates through the weld-power time derivative. Journal of Manufacturing and Materials Processing 3(1):1. https://doi.org/10.3390/jmmp3010001

    Article  Google Scholar 

  78. Li X, Liang X, Zhang Z, Ma J, Shen J (2020) Cold joining to fabricate large size metallic glasses by the ultrasonic vibrations. Scripta Mater 185:100–104. https://doi.org/10.1016/j.scriptamat.2020.03.059

    Article  Google Scholar 

  79. Palardy G, Shi H, Levy A, Le Corre S, Villegas IF (2018) A study on amplitude transmission in ultrasonic welding of thermoplastic composites. Compos A Appl Sci Manuf 113:339–349. https://doi.org/10.1016/j.compositesa.2018.07.033

    Article  Google Scholar 

  80. Alrubaie MAA (2020) Ultrasonic welding of glass fiber reinforced PP thermoplastic composites: an investigation of the outer layer orientation and the fiber volume fraction. Key Eng Mater 858:3–13. https://doi.org/10.4028/www.scientific.net/KEM.858.3

    Article  Google Scholar 

  81. Tutunjian S, Eroglu O, Dannemann M, Modler N, Fischer F (2019) A numerical analysis of an energy directing method through friction heating during the ultrasonic welding of thermoplastic composites. J Thermoplast Compos Mater 33(11):1569–1587. https://doi.org/10.1177/0892705719833108

    Article  Google Scholar 

  82. Wang T, Su X, Wang HH, Zhang ZH, Li H, Chen J (2019) Influence mechanism of welding time and energy director to the thermoplastic composite joints by ultrasonic welding. J Manuf Process 37:196–202. https://doi.org/10.1016/j.jmapro.2018.11.002

    Article  Google Scholar 

  83. Kumar KR, Omkumar M (2020) Investigation and characterization of ultrasonically welded GF/PA6T composites. Materials Today: Proceedings 26:282–286. https://doi.org/10.1016/j.matpr.2019.11.261

    Article  Google Scholar 

  84. Chen LY, Zhi Q, Li JC, Liu ZX, Wang PC (2018) Single-sided ultrasonic welding of CF/nylon 6 composite without energy directors. Weld J 97(1):17–25. https://doi.org/10.29391/2018.97.002

  85. Zhi Q, Tan X-R, Lu L, Chen L-Y, Li J-C, Liu Z-X (2017) Decomposition of ultrasonically welded carbon fiber/polyamide 66 and its effect on weld quality. Welding in the World 61(5):1017–1028. https://doi.org/10.1007/s40194-017-0482-5

    Article  Google Scholar 

  86. Palardy G, Villegas IF (2016) On the effect of flat energy directors thickness on heat generation during ultrasonic welding of thermoplastic composites. Compos Interfaces 24(2):203–214. https://doi.org/10.1080/09276440.2016.1199149

    Article  Google Scholar 

  87. Senders F, van Beurden M, Palardy G, Villegas IF (2016) Zero-flow: a novel approach to continuous ultrasonic welding of CF/PPS thermoplastic composite plates. Advanced Manufacturing: Polymer & Composites Science 2(3–4):83–92. https://doi.org/10.1080/20550340.2016.1253968

    Article  Google Scholar 

  88. Dell’Anna R, Lionetto F, Montagna F, Maffezzoli A (2018) Lay-up and consolidation of a composite pipe by in situ ultrasonic welding of a thermoplastic matrix composite tape. Materials (Basel) 11(5):786. https://doi.org/10.3390/ma11050786

    Article  Google Scholar 

  89. Zhang G-P, Li J-C, Liu Z-X, Wang P-C (2020) Application of ultrasonic welding to repair adhesively bonded short carbon fiber reinforced Nylon 6 composites. Int J Adhes Adhes 100:102603. https://doi.org/10.1016/j.ijadhadh.2020.102603

    Article  Google Scholar 

  90. Benatar A, Gutowski TG (1989) Ultrasonic welding of PEEK graphite APC-2 composites. Polym Eng Sci 29:1705–1721

    Article  Google Scholar 

  91. Wang X, Yan J, Li R, Yang S (2016) FEM investigation of the temperature field of energy director during ultrasonic welding of PEEK composites. J Thermoplast Compos Mater 19(5):593–607. https://doi.org/10.1177/0892705706067479

    Article  Google Scholar 

  92. Bhudolia SK, Gohel G, Fai LK, Barsotti RJ Jr (2020) Investigation on ultrasonic welding attributes of novel carbon/elium® composites. Materials (Basel) 13(5):1117. https://doi.org/10.3390/ma13051117

    Article  Google Scholar 

  93. Levy A, Le Corre S, Fernandez Villegas I (2014) Modeling of the heating phenomena in ultrasonic welding of thermoplastic composites with flat energy directors. J Mater Process Technol 214(7):1361–1371. https://doi.org/10.1016/j.jmatprotec.2014.02.009

    Article  Google Scholar 

  94. Zhang G, Qiu J, Sakai E, Zhou Z (2021) Interface investigation between dissimilar materials by ultrasonic thermal welding by the third phase. Int J Adhes Adhes 104:102722. https://doi.org/10.1016/j.ijadhadh.2020.102722

    Article  Google Scholar 

  95. Savitski A, Klinstein L, Holt K (2016) Novel round energy director for use with servo-driven ultrasonic welder. Phys Procedia 87:105–117. https://doi.org/10.1016/j.phpro.2016.12.017

    Article  Google Scholar 

  96. Takeda S-I, Tanks JD, Sugimoto S, Iwahori Y (2020) Application of sheet-like energy directors to ultrasonic welding of carbon fibre-reinforced thermoplastics. Adv Compos Mater 30(2):192–204. https://doi.org/10.1080/09243046.2020.1811464

    Article  Google Scholar 

  97. Schug A, Rinker D, Hinterhoelzl R, Drechsler K (2018) Evaluating the potential of forming spot-welded layups out of fibre reinforced thermoplastic tape without previous consolidation. IntJ Mater Form 12(2):279–293. https://doi.org/10.1007/s12289-018-1416-5

    Article  Google Scholar 

  98. Luo Y, Zhang Z, Wang X, Zheng Y (2010) Ultrasonic bonding for thermoplastic microfluidic devices without energy director. Microelectron Eng 87(11):2429–2436. https://doi.org/10.1016/j.mee.2010.04.020

    Article  Google Scholar 

  99. Gao Y-H, Zhi Q, Lu L, Liu Z-X, Wang P-C (2018) Ultrasonic welding of carbon fiber reinforced nylon 66 composite without energy director. J Manuf Sci Eng 140(5):051009–151001. https://doi.org/10.1115/1.4039113

    Article  Google Scholar 

  100. Li Y, Arinez J, Liu Z, Hwa Lee T, Fan H-T, Xiao G, Banu M, Jack Hu S (2018) Ultrasonic welding of carbon fiber reinforced composite with variable blank holding force. J Manuf Sci Eng 140(9):091011–091011. https://doi.org/10.1115/1.4040427

    Article  Google Scholar 

  101. Zhi Q, Tan XR, Liu ZX (2017) Effect of moisture on the ultrasonic welding of carbon-fiber-reinforced polyamide 66 composite. Weld J 96(6):185s–192s

    Google Scholar 

  102. Liu HK, Dai WL, Lee YC (2000) Moisture effects and acoustic emission characterization on lap shear strength in ultrasonic welded carbon/nylon composites. J Mater Sci 35(13):3389–3396. https://doi.org/10.1023/A:1004837119725

    Article  Google Scholar 

  103. Wang Q, Springer GS (2016) Moisture absorption and fracture toughness of PEEK polymer and graphite fiber reinforced PEEK. J Compos Mater 23(5):434–447. https://doi.org/10.1177/002199838902300501

    Article  Google Scholar 

  104. Tsiangou E, Teixeira de Freitas S, Villegas IF, Benedictus R (2020) Ultrasonic welding of epoxy- to polyetheretherketone-based composites: Investigation on the material of the energy director and the thickness of the coupling layer. J Compos Mater 54(22):3081–3098. https://doi.org/10.1177/0021998320910207

    Article  Google Scholar 

  105. Bhudolia SK, Gohel G, Fai LK, Barsotti Rj Jr (2020) Fatigue response of ultrasonically welded carbon/Elium® thermoplastic composites. Mater Lett 264. https://doi.org/10.1016/j.matlet.2020.127362

  106. Villegas FI, Vizcaino Rubio P (2015) On avoiding thermal degradation during welding of high-performance thermoplastic composites to thermoset composites. Compos A Appl Sci Manuf 77:172–180. https://doi.org/10.1016/j.compositesa.2015.07.002

    Article  Google Scholar 

  107. Tsiangou E, Kupski J, Teixeira de Freitas S, Benedictus R, Villegas IF (2021) On the sensitivity of ultrasonic welding of epoxy- to polyetheretherketone (PEEK)-based composites to the heating time during the welding process. Compos A Appl Sci Manuf 144:106334. https://doi.org/10.1016/j.compositesa.2021.106334

    Article  Google Scholar 

  108. Villegas IF, Van Moorleghem R (2018) Ultrasonic welding of carbon/epoxy and carbon/PEEK composites through a PEI thermoplastic coupling layer. Compos A Appl Sci Manuf 109:75–83. https://doi.org/10.1016/j.compositesa.2018.02.022

    Article  Google Scholar 

  109. Weibel D, Balle F, Backe D (2017) Ultrasonic fatigue of CFRP - experimental principle, damage analysis and very high cycle fatigue properties, in: Key Engineering Materials 621–628

  110. Sebastian B, Hannemann B, Balle F, Schmeer S, Breuer UP (2017) Fatigue behavior of multifunctional CFRP laminates and intrinsic capabilities for damage monitoring, in: ICCM International Conferences on Composite Materials

  111. Guo H, Gingerich MB, Headings LM, Hahnlen R, Dapino MJ (2019) Joining of carbon fiber and aluminum using ultrasonic additive manufacturing (UAM). Compos Struct 208:180–188. https://doi.org/10.1016/j.compstruct.2018.10.004

    Article  Google Scholar 

  112. Ageorges C, Ye L, Hou M (2000) Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review. Composites: Part A:839–857. https://doi.org/10.1016/S1359-835X(00)00166-4

  113. Dhara S, Das A (2020) Impact of ultrasonic welding on multi-layered Al–Cu joint for electric vehicle battery applications: a layer-wise microstructural analysis. Mater Sci Eng A 791:139795. https://doi.org/10.1016/j.msea.2020.139795

    Article  Google Scholar 

  114. Balle F, Staab F, Born J (2016) Joining of light metals to fiber reinforced polymer composites by power ultrasonics, in: ECCM 2016 - Proceeding of the 17th European Conference on Composite Materials

  115. Balle F, Eifler D (2012) Statistical test planning for ultrasonic welding of dissimilar materials using the example of aluminum-carbon fiber reinforced polymers (CFRP) joints. Materialwiss Werkstofftech 43(4):286–292. https://doi.org/10.1002/mawe.201200943

    Article  Google Scholar 

  116. Wagner G, Balle F, Eifler D (2013) Ultrasonic welding of aluminum alloys to fiber reinforced polymers. Adv Eng Mater 15(9):792–803. https://doi.org/10.1002/adem.201300043

    Article  Google Scholar 

  117. Lionetto F, Balle F, Maffezzoli A (2017) Hybrid ultrasonic spot welding of aluminum to carbon fiber reinforced epoxy composites. J Mater Process Technol 247:289–295. https://doi.org/10.1016/j.jmatprotec.2017.05.002

    Article  Google Scholar 

  118. Kida K, Cheng C-P, Cheng C-H, Chen Y-C, l-W W, You Y-S, (2017) Ultrasonic dissimilar joining of aluminum alloy and polymer with the composite material of ABS polymer doping carbonized rice husk. MATEC Web of Conferences 130:06001. https://doi.org/10.1051/matecconf/201713006001

    Article  Google Scholar 

  119. Lionetto F, Mele C, Leo P, D’Ostuni S, Balle F, Maffezzoli A (2018) Ultrasonic spot welding of carbon fiber reinforced epoxy composites to aluminum: mechanical and electrochemical characterization. Compos B Eng 144:134–142. https://doi.org/10.1016/j.compositesb.2018.02.026

    Article  Google Scholar 

  120. Staab F, Balle F (2019) Ultrasonic torsion welding of ageing-resistant Al/CFRP joints: Properties, microstructure and joint formation. Ultrasonics 93:139–144. https://doi.org/10.1016/j.ultras.2018.11.006

    Article  Google Scholar 

  121. James S, De La Luz L (2019) Finite element analysis and simulation study of CFRP/Ti stacks using ultrasonic additive manufacturing. Int J Adv Manuf Technol 104(9–12):4421–4431. https://doi.org/10.1007/s00170-019-04228-6

    Article  Google Scholar 

  122. Backe S, Balle F, Hannemann B, Schmeer S, Breuer UP (2019) Fatigue properties of multifunctional metal- and carbon-fibre-reinforced polymers and intrinsic capabilities for damage monitoring. Fatigue Fract Eng Mater Struct 42(1):143–151. https://doi.org/10.1111/ffe.12878

    Article  Google Scholar 

  123. Konchakova N, Balle F, Barth FJ, Mueller R, Eifler D, Steinmann P (2010) Finite element analysis of an inelastic interface in ultrasonic welded metal/fibre-reinforced polymer joints. Comput Mater Sci 50(1):184–190. https://doi.org/10.1016/j.commatsci.2010.07.024

    Article  Google Scholar 

  124. Balle F, Eifler D (2013) Special topic: welded metal/cfrp-structures. Adv Eng Mater 15(9):791. https://doi.org/10.1002/adem.201300168

    Article  Google Scholar 

  125. Konchakova NA, Mueller R, Barth FJ (2010) Modelling and numeric analysis of metal/fibre-reinforced polymer joints, in: 18th European Conference on Fracture: Fracture of Materials and Structures from Micro to Macro Scale

  126. Staab F, Balle F, Born J (2017) Ultrasonic torsion welding of aging resistant Al/CFRP joints—concepts, mechanical and microstructural properties, in: Key Engineering Materials 395–400

  127. Rubino F, Parmar H, Esperto V, Carlone P (2020) Ultrasonic welding of magnesium alloys: a review. Mater Manuf Processes 35(10):1051–1068. https://doi.org/10.1080/10426914.2020.1758330

    Article  Google Scholar 

  128. Tamura R, Yasuda K (2018) Ultrasonic joining of carbon fiber reinforced thermoplastic and Ti alloy. 2018 Ieee Cpmt Symposium Japan (Icsj):135–138. https://doi.org/10.1109/ICSJ.2018.8602615

  129. Kawakami K, Yasuda K (2019) Utrasonic joining of carbon fiber reinforced thermoplastic and magnesium alloy, in: 2019 IEEE CPMT Symposium Japan, ICSJ 135–137

  130. James S, Dang C (2020) Investigation of shear failure load in ultrasonic additive manufacturing of 3D CFRP/Ti structures. J Manuf Process 56:1317–1321. https://doi.org/10.1016/j.jmapro.2020.04.026

    Article  Google Scholar 

  131. Guo W, Jin J, Jack Hu S (2019) Profile monitoring and fault diagnosis via sensor fusion for ultrasonic welding. J Manuf Sci Eng 141(8):081001–081001. https://doi.org/10.1115/1.4043731

    Article  Google Scholar 

  132. Li Y, Lee TH, Banu M, Hu SJ (2020) An integrated process-performance model of ultrasonic composite welding based on finite element and artificial neural network. J Manuf Process 56:1374–1380. https://doi.org/10.1016/j.jmapro.2020.04.033

    Article  Google Scholar 

  133. Rodríguez-Martín M, Lagüela S, González-Aguilera D, Rodríguez-Gonzálvez P (2015) Procedure for quality inspection of welds based on macro-photogrammetric three-dimensional reconstruction. Opt Laser Technol 73:54–62. https://doi.org/10.1016/j.optlastec.2015.04.011

    Article  Google Scholar 

  134. Ma Z, Zhang Y (2020) Characterization of multilayer ultrasonic welding based on the online monitoring of sonotrode displacement. J Manuf Process 54:138–147. https://doi.org/10.1016/j.jmapro.2020.03.007

    Article  Google Scholar 

  135. Li Y, Yu B, Wang B, Lee TH, Banu M (2020) Online quality inspection of ultrasonic composite welding by combining artificial intelligence technologies with welding process signatures. Mater Des 194:108912. https://doi.org/10.1016/j.matdes.2020.108912

    Article  Google Scholar 

  136. Li Y, Liu Z, Shen J, Lee TH, Banu M, Hu SJ (2019) Weld quality prediction in ultrasonic welding of carbon fiber composite based on an ultrasonic wave transmission model. J Manuf Sci Eng 141(8):081010–081011. https://doi.org/10.1115/1.4043900

    Article  Google Scholar 

  137. Winger H, Döbrich O, Saeed H, Gereke T, Nocke A, Cherif C (2019) Monitoring the joint area of composite membrane materials. Appl Sci 9(10):2068. https://doi.org/10.3390/app9102068

    Article  Google Scholar 

  138. Ochôa P, Villegas IF, Groves RM, Benedictus R (2019) Diagnostic of manufacturing defects in ultrasonically welded thermoplastic composite joints using ultrasonic guided waves. NDT and E Int 107:102126. https://doi.org/10.1016/j.ndteint.2019.102126

    Article  Google Scholar 

  139. Reis JP, de Moura M, Samborski S (2020) Thermoplastic composites and their promising applications in joining and repair composites structures: a review. Materials (Basel) 13(24):5832. https://doi.org/10.3390/ma13245832

    Article  Google Scholar 

  140. Dobrota D, Petrescu V (2018) Use of ultrasound in reconditioning by welding of tools used in the process of regenerating rubber. Materials (Basel) 11(2):276. https://doi.org/10.3390/ma11020276

    Article  Google Scholar 

  141. Hoskins D, Palardy G (2020) High-speed consolidation and repair of carbon fiber/epoxy laminates through ultrasonic vibrations: A feasibility study. J Compos Mater 54(20):2707–2721. https://doi.org/10.1177/0021998320903097

    Article  Google Scholar 

  142. Hargou K, Pingkarawat K, Mouritz AP, Wang CH (2013) Ultrasonic activation of mendable polymer for self-healing carbon–epoxy laminates. Compos B Eng 45(1):1031–1039. https://doi.org/10.1016/j.compositesb.2012.07.016

    Article  Google Scholar 

  143. Chinnadurai T, Prabaharan N, Saravanan S, Pandean MK, Pandiyan P, Alhelou HH (2021) Prediction of process parameters of ultrasonically welded PC/ABS material using soft-computing techniques. IEEE Access 9:33849–33859. https://doi.org/10.1109/access.2021.3061657

    Article  Google Scholar 

Download references

Funding

This research work is supported by the National Natural Science Foundation of China (Grant No. 51805416), Young Elite Scientists Sponsorship Program by CAST (Grant No. 2019QNRC001), Natural Science Foundation of Hunan Province (Grant No. 2020JJ5716), Hunan Provincial Natural Science Foundation for Excellent Young Scholars (Grant No. 2021JJ20059), and Huxiang High-Level Talent Gathering Project of Hunan Province (Grant No. 2019RS1002).

Author information

Authors and Affiliations

Authors

Contributions

Haijun Li and Jinliang Wu analyzed the data; Chao Chen, Haijun Li, and Ruixiang Yi contributed reagents/materials/analysis tools; Haijun Li, Chao Chen, and Yuxiang Li wrote the paper.

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, C., Yi, R. et al. Ultrasonic welding of fiber-reinforced thermoplastic composites: a review. Int J Adv Manuf Technol 120, 29–57 (2022). https://doi.org/10.1007/s00170-022-08753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08753-9

Keywords

Navigation