Skip to main content

Advertisement

Log in

5G in manufacturing: a literature review and future research

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

As an important part of the real economy, manufacturing industry plays a major role in the whole human society. Smart manufacturing has become a strategic issue for many countries. Smart manufacturing puts forward higher requirements for the intelligence of shop-floor production process, product operation and maintenance, logistics and supply chain, which are inseparable from the support of advanced communication technology. As a new generation of mobile communication technology, 5G plays an important role in many areas of smart manufacturing with the characteristics of high bandwidth, low latency, and massive connectivity. This paper first analyzed the communication requirements for machine-to-machine, manufacturing Internet of Things, cyber-physical system-based manufacturing, logistics and supply chain, industrial Internet platform and digital twin–driven manufacturing. Based on the requirements, the research and application progress of 5G in manufacturing are investigated from the above six aspects. In addition, this paper proposed relevant future research hotspots for the further integration of 5G and the above-mentioned six areas of smart manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tao F, Cheng J, Qi Q et al (2018) Digital twin-driven product design, manufacturing and service with big data. Int J Adv Manuf Technol 94(9–12):3563–3576

    Article  Google Scholar 

  2. Chen S, Kang S (2018) A tutorial on 5G and the progress in China. Frontiers Inf Technol Electron Eng 19(3):309–321

    Article  Google Scholar 

  3. Zunino C, Valenzano A (2020) Factory communications at the dawn of the fourth industrial revolution. Comput Stand Interfaces 71(15):103433

  4. Kumar A, Gupta M (2017) A review on activities of fifth generation mobile communication system. Alexandria Eng J 57:1125–2113

    Article  Google Scholar 

  5. Zhang P, Yang X, Chen J, Huang Y (2019) A survey of testing for 5G: solutions, opportunities, and challenges. China Commun 16(1):69–85

    Google Scholar 

  6. Shariatmadari H, Ratasuk R, Iraji S et al (2015) Machine-type communications: current status and future perspectives toward 5G systems. IEEE Commun Mag 53(9):10–17

    Article  Google Scholar 

  7. Jo M, Maksymyuk T, Batista RL et al (2014) A survey of converging solutions for heterogeneous mobile networks. IEEE Wirel Commun 21(6):54–62

    Article  Google Scholar 

  8. Mehmood Y, Haider N, Imran M et al (2017) M2M communications in 5G: state-of-the-art architecture, recent advances, and research challenges. IEEE Commun Mag 55(9):194–201

    Article  Google Scholar 

  9. Ali A, Shah GA, Farooq MO, Ghani U (2017) Technologies and challenges in developing machine-to-machine applications: a survey. J Netw Comput Appl 83:124–139

    Article  Google Scholar 

  10. Bacco M, Cassarà P, Colucci M, Gotta A (2018) Modeling reliable M2M/IoT traffic over random access satellite links in non-saturated conditions. IEEE J Sel Areas Commun 36(5):1042–1051

    Article  Google Scholar 

  11. Lai C, Guo W, Li Y, Zheng D (2018) SEIP: Secure and seamless IP communications for group-oriented machine to machine communications. Peer Peer Netw Appl 11(5):821–836

    Article  Google Scholar 

  12. Gürsu HM, Vilgelm M, Alba AM et al (2019) Admission control based traffic-agnostic delay-constrained random access (ac/dc-ra) for m2m communication. IEEE Trans Wirel Commun 18(5):2858–2871

    Article  Google Scholar 

  13. Ye Q, Zhuang W, Zhang S et al (2018) Dynamic radio resource slicing for a two-tier heterogeneous wireless network. IEEE Trans Veh Technol 67(10):9896–9910

    Article  Google Scholar 

  14. Zhou Z, Chen X, Zhang Y, Mumtaz S (2020) Blockchain-empowered secure spectrum sharing for 5G heterogeneous networks. IEEE Netw 34(1):24–31

    Article  Google Scholar 

  15. Sharma SK, Wang X (2019) Toward massive machine type communications in ultra-dense cellular IoT networks: current issues and machine learning-assisted solutions. IEEE Commun Surveys Tuts 22(1):426–471

    Article  Google Scholar 

  16. Mavromatis A, Colman-Meixner C, Silva AP et al (2019) A software-defined IoT device management framework for edge and cloud computing. IEEE Internet Things J 7(3):1718–1735

    Article  Google Scholar 

  17. Dhirani LL, Armstrong E, Newe T (2021) Industrial IoT, cyber threats, and standards landscape: evaluation and roadmap. Sensors 21(11):3901

    Article  Google Scholar 

  18. Ibrahim H, Bao W, Nguyen UT (2018) Data rate utility analysis for uplink two-hop Internet of Things networks. IEEE Internet Things J 6(2):3601–3619

    Article  Google Scholar 

  19. Fan YC, Chen H, Leu FY, You I (2017) Enabling in-network aggregation by diffusion units for urban scale M2M networks. J Netw Comput Appl 93:215–227

    Article  Google Scholar 

  20. Jang HS, Kim SM, Park HS, Sung DK (2016) An early preamble collision detection scheme based on tagged preambles for cellular M2M random access. IEEE Trans Veh Technol 66(7):5974–5984

    Article  Google Scholar 

  21. Shirvanimoghaddam M, Dohler M, Johnson SJ (2017) Massive non-orthogonal multiple access for cellular IoT: potentials and limitations. IEEE Commun Mag 55(9):55–61

    Article  Google Scholar 

  22. Zhang X, Labeau F, Liang YC, Fang J (2018) Compressive sensing-based multiuser detection via iterative reweighed approach in M2M communications. IEEE Wireless Commun Lett 7(5):764–767

    Article  Google Scholar 

  23. Mostafa AE, Wong VWS, Zhou Y et al (2021) Aggregate preamble sequence design and detection for massive IoT with deep learning. IEEE Trans Veh Technol 70(4):3800–3816

    Article  Google Scholar 

  24. Bai L, Liu J, Yu Q et al (2020) A collision resolution protocol for random access in massive MIMO. IEEE J Sel Areas Commun 39(3):686–699

    Article  Google Scholar 

  25. Chen Z, Smith D (2020) MmWave M2M Networks: improving delay performance of relaying. IEEE Trans Wirel Commun 20(1):577–589

    Article  Google Scholar 

  26. Li X, Rao JB, Zhang H (2015) Engineering machine-to-machine traffic in 5G. IEEE Internet Things J 3(4):609–618

    Article  Google Scholar 

  27. Liang Y, Li X, Zhang J, Ding Z (2017) Non-orthogonal random access for 5G networks. IEEE Trans Wirel Commun 16(7):4817–4831

    Article  Google Scholar 

  28. Sobhi-Givi S, Shayesteh MG, Kalbkhani H (2020) Energy-efficient power allocation and user selection for mmWave-NOMA transmission in M2M communications underlaying cellular heterogeneous networks. IEEE Trans Veh Technol 69(9):9866–9881

    Article  Google Scholar 

  29. Shi J, Liu C, Hong X, Wang CX (2017) Coexistence of delay-sensitive MTC/HTC traffic in large scale networks. Sci China Inform Sci 60(10):1–15

    Article  Google Scholar 

  30. Naeem M, Ejaz W, Karim L et al (2017) Distributed gateway selection for M2M communication in cognitive 5G networks. IEEE Netw 31(6):94–100

    Article  Google Scholar 

  31. Rehman WU, Salam T, Almogren A et al (2020) Improved resource allocation in 5G MTC networks. IEEE Access 8:49187–49197

    Article  Google Scholar 

  32. Saddoud A, Doghri W, Charfi E, Fourati LC (2020) 5G radio resource management approach for multi-traffic IoT communications. Comput Netw 166:106936

  33. Miandoab FT, Pishvaei SM, Safari MM, Tazehkand BM (2021) Outage performance analysis of millimeter-wave NOMA transmission for line of sight and non-line of sight propagations based on different clustering schemes. Phys Commun 46:101336

  34. Das SK, Hossain MF (2020) A location-aware power control mechanism for interference mitigation in M2M communications over cellular networks. Comput Electr Eng 88:106867

  35. Wu Y, Zhang S, Liu Z et al (2020) An efficient resource allocation for massive MTC in NOMA-OFDMA based cellular networks. Electron 9(5):705

    Article  Google Scholar 

  36. Hamdoun S, Rachedi A, Ghamri-Doudane Y (2020) Graph-based radio resource sharing schemes for MTC in D2D-based 5G networks. Mobile Netw and App 25(3)

  37. Vural S, Wang N, Bucknell P et al (2018) Dynamic preamble subset allocation for RAN slicing in 5G networks. IEEE Access 6:13015–13032

    Article  Google Scholar 

  38. Ali A, Shah GA, Arshad J (2019) Energy efficient resource allocation for M2M devices in 5G. Sensors 19(8):1830

  39. Yang TW, Ho YH, Chou CF (2020) Achieving M2M-device authentication through heterogeneous information bound with USIM card. Futur Gener Comput Syst 110:629–637

    Article  Google Scholar 

  40. De Mattos WD, Gondim PRL (2016) M-health solutions using 5G networks and M2M communications. IT Prof 18(3):24–29

    Article  Google Scholar 

  41. Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surveys Tuts 18(3):1617–1655

    Article  Google Scholar 

  42. Moubayed A, Hammad K, Sham A, Lutfiyya H (2018) Dynamic spectrum management through resource virtualization with m2m communications. IEEE Commun Mag 56(10):121–127

    Article  Google Scholar 

  43. Temesvári ZM, Maros D, Kádár P (2019) Review of mobile communication and the 5G in manufacturing. Procedia Manuf 32:600–612

    Article  Google Scholar 

  44. Papakostas N, O'Connor J, Byrne G (2016) Internet of things technologies in manufacturing: application areas, challenges and outlook. International Conference on Information Society (i-Society) IEEE pp 126–131

  45. Rao SK, Prasad R (2018) Impact of 5G technologies on industry 4.0. Wireless personal commun 100(1):145–159

  46. Cheng J, Chen W, Tao F, Lin CL (2018) Industrial IoT in 5G environment towards smart manufacturing. J Ind Inf Integr 10:10–19

    Google Scholar 

  47. Jiang T, Zhang J, Tang P et al (2021) 3GPP standardized 5G channel model for IIoT scenarios: a survey. IEEE Internet Things J 8(11):8799–8815

    Article  Google Scholar 

  48. Wang Y (2021) Industrial structure technology upgrade based on 5G network service and IoT intelligent manufacturing. Microprocess Microsyst 81:103696

  49. Lucas-Estañ MC, Gozalvez J, Sepulcre M (2019) On the capacity of 5G NR grant-free scheduling with shared radio resources to support ultra-reliable and low-latency communications. Sensors 19(16):3575

    Article  Google Scholar 

  50. Chen Y, Liu Z, Zhang Y et al (2020) Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial internet of things. IEEE Trans Ind Informat 17(7):4925–4934

    Article  Google Scholar 

  51. Iannacci J, Resta G, Bagolini A et al (2020) RF-MEMS Monolithic K and Ka Band multi-state phase shifters as building blocks for 5G and Internet of Things (IoT) applications. Sensors 20(9):2612

    Article  Google Scholar 

  52. Iannacci J (2019) Compact modelling-based coupled simulation of RF-MEMS networks for 5G and Internet of Things (IoT) applications. Microsyst Technol 25(1):329–338

    Article  MathSciNet  Google Scholar 

  53. Olfat E, Bengtsson M (2020) A general framework for joint estimation-detection of channel, nonlinearity parameters and symbols for OFDM in IoT-based 5G networks. Signal Process 167:107298

  54. Huang R, Xiao R, Zhu W et al (2021) Towards an efficient real-time kernel function stream clustering method via shared nearest-neighbor density for the IIoT. Inf Sci 566:364–378

    Article  MathSciNet  Google Scholar 

  55. Al-Aqrabi H, Johnson AP, Hill R et al (2020) Hardware-intrinsic multi-layer security: a new frontier for 5G enabled IIoT. Sensors 20(7):1963

  56. Wei D, Jin Y, Vural S et al (2011) An energy-efficient clustering solution for wireless sensor networks. IEEE Trans Wirel Commun 10(11):3973–3983

    Article  Google Scholar 

  57. Aazam M, Harras KA, Zeadally S (2019) Fog computing for 5G tactile industrial Internet of Things: QoE-aware resource allocation model. IEEE Trans Ind Informat 15(5):3085–3092

    Article  Google Scholar 

  58. Chung MA, Chang WH (2020) Low-cost, low-profile and miniaturized single-plane antenna design for an Internet of Thing device applications operating in 5G, 4G, V2X, DSRC, WiFi 6 band, WLAN, and WiMAX communication systems. Microw Opt Technol Lett 62(4):1765–1773

    Article  Google Scholar 

  59. Zhao X, Colombo L, Cassella C (2020) Aluminum nitride two-dimensional-resonant-rods. Appl Phys Lett 116(14):143504

  60. Pothumarti R, Jain K, Krishnan P (2021) A lightweight authentication scheme for 5G mobile communications: a dynamic key approach. J Ambient Intell Humanized Comput. https://doi.org/10.1007/s12652-020-02857-4

    Article  Google Scholar 

  61. Liu Y, Tong KD, Mao F, Yang J (2020) Research on digital production technology for traditional manufacturing enterprises based on industrial Internet of Things in 5G era. Int J Adv Manuf Technol 107(3):1101–1114

    Article  Google Scholar 

  62. Zhong M, Yang Y, Yao H et al (2019) 5G and IoT: towards a new era of communications and measurements. IEEE Instrum Meas Mag 22(6):18–26

    Article  Google Scholar 

  63. Chu Y, Pan L, Leng K et al (2020) Research on key technologies of service quality optimization for industrial IoT 5G network for intelligent manufacturing. Int J Adv Manuf Technol 107(3):1071–1080

    Article  Google Scholar 

  64. Attaran M (2021) The impact of 5G on the evolution of intelligent automation and industry digitization. J Ambient Intell Humanized Comput. https://doi.org/10.1007/s12652-020-02521-x

    Article  Google Scholar 

  65. Rojas RA, Rauch E (2019) From a literature review to a conceptual framework of enablers for smart manufacturing control. Int J Adv Manuf Technol 104(1):517–533

    Article  Google Scholar 

  66. Andronie M, Lăzăroiu G, Iatagan M et al (2021) Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and deep learning-assisted smart process management in cyber-physical production systems. Electron 10(20):2497

    Article  Google Scholar 

  67. Zheng P, Wang H, Sang Z et al (2018) Smart manufacturing systems for Industry 4.0: conceptual framework, scenarios, and future perspectives. Frontiers Mech Eng 13(2):137–150

  68. Saldivar AAF, Li Y, Chen W et al (2015) Industry 4.0 with cyber-physical integration: a design and manufacture perspective. 21st international conference on automation and computing (ICAC), IEEE pp 1–6

  69. Lucas-Estañ MC, Raptis TP, Sepulcre M et al (2018) A software defined hierarchical communication and data management architecture for industry 4.0. 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS). IEEE pp 37–44

  70. Atat R, Liu L, Wu J et al (2019) Green massive traffic offloading for cyber-physical systems over heterogeneous cellular networks. Mobile Netw Appl 24(4):1364–1372

    Article  Google Scholar 

  71. Witrisal K, Hinteregger S, Kulmer J et al (2016) High-accuracy positioning for indoor applications: RFID, UWB, 5G, and beyond. IEEE International Conference on RFID (RFID). IEEE pp 1–7

  72. Zhang J, Wang Y, Li S, Shi S (2020) An architecture for IoT-enabled smart transportation security system: a geospatial approach. IEEE Internet Things J 8(8):6205–6213

    Article  Google Scholar 

  73. Marwat SNK, Shuaib M, Ahmed S et al (2020) Medium access-based scheduling scheme for cyber physical systems in 5G networks. Electron 9(4):639

    Article  Google Scholar 

  74. Adegoke EI, Edwards RM, Whittow WG, Bindel A (2019) Delay spread emulation in machine workshops with fractals for wireless communication system planning. Phys Commun 35:100732

  75. Vidal JM, Monge MAS (2019) Framework for anticipatory self-protective 5G environments. Proceedings of the 14th International Conference on Availability, Reliability and Security 1–9

  76. Wang D, Zhao N, Song B et al (2021) Resource management for secure computation offloading in softwarized cyber–physical systems. IEEE Internet Things J 8(11):9294–9304

    Article  Google Scholar 

  77. Burg A, Chattopadhyay A, Lam KY (2017) Wireless communication and security issues for cyber–physical systems and the Internet-of-Things. Proc IEEE 106(1):38–60

    Article  Google Scholar 

  78. Kortela J, Nasiri B, Smirnov A et al (2017) Educational setup for service oriented process automation with 5G testbed. IFAC-PapersOnLine 50(2):127–132

    Article  Google Scholar 

  79. Cheng H, Liu J, Mao J et al (2018) A compatible openflow platform for enabling security enhancement in SDN. Secur Commun Netw

  80. Yang Y, Ma Y, Xiang W et al (2018) Joint optimization of energy consumption and packet scheduling for mobile edge computing in cyber-physical networks. IEEE Access 6:15576–15586

    Article  Google Scholar 

  81. Ashraf S A, Aktas I, Eriksson E et al (2016) Ultra-reliable and low-latency communication for wireless factory automation: from LTE to 5G. IEEE 21st international conference on emerging technologies and factory automation (ETFA). IEEE pp 1–8

  82. Li B, Wu Y, Song J et al (2020) DeepFed: federated deep learning for intrusion detection in industrial cyber–physical systems. IEEE Trans Ind Informat 17(8):5615–5624

    Article  Google Scholar 

  83. Hussain B, Du Q, Sun B, Han Z (2020) Deep learning-based DDoS-attack detection for cyber–physical system over 5G network. IEEE Trans Ind Informat 17(2):860–870

    Article  Google Scholar 

  84. Taboada I, Shee H (2021) Understanding 5G technology for future supply chain management. Int J Logistics Res Appl 24(4):392–406

    Article  Google Scholar 

  85. Burow K, Hribernik K, Thoben KD (2018) First steps for a 5G-ready service in cloud manufacturing. IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), IEEE pp 1–5

  86. Sabella R, Iovanna P, Bottari G, Cavaliere F (2020) Optical transport for Industry 4.0. J Opt Commun Netw 12(8):264–276

  87. Mistry I, Tanwar S, Tyagi S, Kumar N (2020) Blockchain for 5G-enabled IoT for industrial automation: a systematic review, solutions, and challenges. Mech Syst Signal Process 135:106382

  88. Jangirala S, Das AK, Vasilakos AV (2019) Designing secure lightweight blockchain-enabled RFID-based authentication protocol for supply chains in 5G mobile edge computing environment. IEEE Trans Ind Informat 16(11):7081–7093

    Article  Google Scholar 

  89. Yang H, Sun Z, Jiang G et al (2020) Cloud-manufacturing-based condition monitoring platform with 5G and standard information model. IEEE Internet Things J 8(8):6940–6948

    Article  Google Scholar 

  90. Mannweiler C, Schmelz L C, Lohmüller S et al (2016) Cross-domain 5G network management for seamless industrial communications. NOMS IEEE/IFIP Network Operations and Management Symposium. IEEE pp 868–872

  91. Bajracharya R, Shrestha R, Jung H (2020) Future is unlicensed: private 5G unlicensed network for connecting industries of future. Sensors 20(10):2774

    Article  Google Scholar 

  92. Yan K, Liu L, Xiang Y, Jin Q (2020) Guest Editorial: AI and machine learning solution cyber intelligence technologies: new methodologies and applications. IEEE Trans Ind Informat 16(10):6626–6631

    Article  Google Scholar 

  93. Lee S, Youn J, Jung BC (2021) Hybrid AF/DF cooperative relaying technique with phase steering for industrial IoT networks. Energies 14(4):937

    Article  Google Scholar 

  94. Chen KC, Lin SC, Hsiao JH et al (2020) Wireless networked multirobot systems in smart factories. Proc IEEE 109(4):468–494

    Article  Google Scholar 

  95. Habibi MA, Nasimi M, Han B, Schotten HD (2019) A comprehensive survey of RAN architectures toward 5G mobile communication system. IEEE Access 7:70371–70421

    Article  Google Scholar 

  96. Varghese A, Tandur D (2014) Wireless requirements and challenges in Industry 4.0. International conference on contemporary computing and informatics (IC3I) IEEE pp 634–638

  97. Batalla JM (2020) On analyzing video transmission over wireless WiFi and 5G C-band in harsh IIoT environments. IEEE Access 8:118534–118541

    Article  Google Scholar 

  98. Scanzio S, Wisniewski L, Gaj P (2021) Heterogeneous and dependable networks in industry—a survey. Comput Ind 125:103388

  99. Szymanski TH (2016) Securing the industrial-tactile Internet of Things with deterministic silicon photonics switches. IEEE Access 4:8236–8249

    Article  Google Scholar 

  100. Xu H, Yu W, Griffith D, Golmie N (2018) A survey on industrial Internet of Things: a cyber-physical systems perspective. IEEE Access 6:78238–78259

    Article  Google Scholar 

  101. Karrenbauer M, Ludwig S, Buhr H et al (2019) Future industrial networking: from use cases to wireless technologies to a flexible system architecture. at-Automatisierungstechnik 67(7):526–544

  102. Kim JA, Park DG, Jeong J (2020) Design and performance evaluation of cost-effective function-distributed mobility management scheme for software-defined smart factory networking. J Ambient Intell Humanized Comput 11(6):2291–2307

    Article  Google Scholar 

  103. Taleb T, Afolabi I, Bagaa M (2019) Orchestrating 5G network slices to support industrial internet and to shape next-generation smart factories. IEEE Netw 33(4):146–154

    Article  Google Scholar 

  104. Taleb T, Mada B, Corici MI et al (2017) PERMIT: network slicing for personalized 5G mobile telecommunications. IEEE Commun Mag 55(5):88–93

    Article  Google Scholar 

  105. Schneider S, Peuster M, Behnke D et al (2019) Putting 5G into production: realizing a smart manufacturing vertical scenario. European Conference on Networks and Communications (EuCNC). IEEE pp 305–309

  106. Peuster M, Schneider S, Behnke D et al (2019) Prototyping and demonstrating 5G verticals: the smart manufacturing case. IEEE Conference on Network Softwarization (NetSoft). IEEE pp 236–238

  107. Valtanen K, Backman J, Yrjölä S (2018) Creating value through blockchain powered resource configurations: analysis of 5G network slice brokering case. IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE pp 185–190

  108. Islambouli R, Sweidan Z, Sharafeddine S (2019) Dynamic multipath resource management for ultra reliable low latency services. IEEE Symposium on Computers and Communications (ISCC). IEEE pp 987–992

  109. Bi Y, Han G, Lin C et al (2019) Intelligent quality of service aware traffic forwarding for software-defined networking/open shortest path first hybrid industrial internet. IEEE Trans Ind Informat 16(2):1395–1405

    Article  Google Scholar 

  110. Chen Q, Xu X, Jiang H, Liu X (2020) An energy-aware approach for industrial Internet of Things in 5G pervasive edge computing environment. IEEE Trans Ind Informat 17(7):5087–5097

    Article  Google Scholar 

  111. Müller M, Behnke D, Bok PB et al (2019) 5G as key technology for networked factories: application of vertical-specific network services for enabling flexible smart manufacturing. IEEE 17th International Conference on Industrial Informatics (INDIN). IEEE pp 1495–1500

  112. Zhao M, Le Gall F, Cousin P et al (2017) Verification and validation framework for 5G network services and apps. IEEE conference on network function virtualization and software defined networks (NFV-SDN). IEEE pp 321–326

  113. Biczok G, Dramitinos M, Toka L et al (2017) Manufactured by software: SDN-enabled multi-operator composite services with the 5G exchange. IEEE Commun Mag 55(4):80–86

    Article  Google Scholar 

  114. Millnert V, Eker J, Bini E (2018) Achieving predictable and low end-to-end latency for a network of smart services. IEEE Global Communications Conference (GLOBECOM). IEEE pp 1–7

  115. Dao NN, Lee Y, Cho S et al (2017) Multi-tier multi-access edge computing: the role for the fourth industrial revolution. International Conference on Information and Communication Technology Convergence (ICTC). IEEE pp 1280–1282

  116. Mekikis PV, Ramantas K, Antonopoulos A et al (2019) NFV-enabled experimental platform for 5G tactile Internet support in industrial environments. IEEE Trans Ind Informat 16(3):1895–1903

    Article  Google Scholar 

  117. Jacob E, Astorga J, Jose Unzilla J et al (2018) Towards a 5G compliant and flexible connected manufacturing facility. Dyna 93(6)

  118. Groshev M, Guimarães C, De La Oliva A et al (2021) Dissecting the impact of information and communication technologies on digital twins as a service. IEEE Access 9:102862–102876

    Article  Google Scholar 

  119. Szabó G, Rácz S, Reider N et al (2019) Digital twin: network provisioning of mission critical communication in cyber physical production systems. IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT). IEEE pp 37–43

  120. Szalay Z (2021) Next generation X-in-the-loop validation methodology for automated vehicle systems. IEEE Access 9(99):35616–35632

    Article  Google Scholar 

  121. Dong R, She C, Hardjawana W et al (2019) Deep learning for hybrid 5G services in mobile edge computing systems: learn from a digital twin. IEEE Trans Wirel Commun 18(10):4692–4707

    Article  Google Scholar 

  122. Vladareanu L, Vladareanu V, Gal AI et al (2020) Digital Twin in 5G Digital era developed through cyber physical systems. IFAC-PapersOnLine 53(2):10885–10890

    Article  Google Scholar 

  123. Wild T, Braun V, Viswanathan H (2021) Joint design of communication and sensing for beyond 5G and 6G systems. IEEE Access 9:30845–30857

    Article  Google Scholar 

  124. Nguyen HX, Trestian R, To D, Tatipamula M (2021) Digital twin for 5G and beyond. IEEE Commun Mag 59(2):10–15

    Article  Google Scholar 

  125. Teng SY, Touš M, Leong WD et al (2021) Recent advances on industrial data-driven energy savings: Digital twins and infrastructures. Renew Sustain Energy Rev 135:110208

Download references

Funding

This work is financially supported in part by the National Natural Science Foundation of China (NSFC) under Grant 52005026, China Postdoctoral Science Foundation under Grant 2020M680291, and the National Natural Science Foundation of China (NSFC) under Grant 52005025.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the subject and scope of the review. Collection, classification and summary of literature were conducted by Jiangfeng Cheng, Yi Yang and Ying Zuo. The future research of 5G in manufacturing was performed by Jiangfeng Cheng and Xiaofu Zou. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiangfeng Cheng.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Yang, Y., Zou, X. et al. 5G in manufacturing: a literature review and future research. Int J Adv Manuf Technol 131, 5637–5659 (2024). https://doi.org/10.1007/s00170-022-08990-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08990-y

Keywords

Navigation