Skip to main content

Advertisement

Log in

On the Utility of the Thermal-Pseudo Mechanical Model’s Residual Stress Prediction Capability for the Development of Friction Stir Processing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper investigates the thermal-pseudo mechanical (TPM) model’s residual stress prediction capability for its utility in developing friction stir processing (FSP). Specifically, two FSP tests under different processing conditions were conducted, and the corresponding simulations were carried out to verify if the TPM model can predict residual stresses for various tool radii and workpiece materials. The model successfully predicted residual stresses with an error less than 4% for one of the tests but failed to work for the other test. Further simulations under different FSP conditions proved that the TPM model works for cast aluminum alloys and wrought aluminum alloys. In addition, the large FSP tool used was found to be the reason for the model’s failure on one of the tests. This indicates that there is a range of tool radii for which the TPM model is applicable. As a solution, this paper suggests modifications to the TPM model based on calibration to the FSP test temperatures. The resulting residual stress prediction is accurate and differs from the experimentally characterized stress values by only 6.5 MPa. The calibrated TPM model requires FSP to be carried out when using a tool with a different radius. Following that, the effect on residual stresses due to changes in the other process parameters, such as the tool traverse & rotation speeds and the clamping conditions, can be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Reports 50(1–2):1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  2. Mishra RS, De PS, Kumar N (2014) Friction stir welding and processing: Science and engineering, vol 9783319070. Springer International Publishing, Cham

    Book  Google Scholar 

  3. S. Meenia, F. Khan MD, S. Babu, R. J. Immanuel, S. K. Panigrahi, and G. D. Janaki Ram, “Particle refinement and fine-grain formation leading to enhanced mechanical behaviour in a hypo-eutectic Al-Si alloy subjected to multi-pass friction stir processing,” Mater. Charact., vol. 113, pp. 134–143, 2016, doi: https://doi.org/10.1016/j.matchar.2016.01.011.

  4. Samanta A et al (2022) Microstructural Modification of a High-Pressure Die-Cast A380 Alloy Through Friction Stir Processing and Its Effect on Mechanical Properties. Miner Met Mater Ser 78(March):766–771. https://doi.org/10.1007/978-3-030-92529-1_101

    Article  Google Scholar 

  5. Rao AG, Deshmukh VP, Prabhu N, Kashyap BP (2015) Ductilizing of a brittle as-cast hypereutectic Al-Si alloy by friction stir processing. Mater Lett 159:417–419. https://doi.org/10.1016/j.matlet.2015.07.006

    Article  Google Scholar 

  6. Samanta A et al (2022) Microstructure-refinement–driven enhanced tensile properties of high-pressure die-cast A380 alloy through friction stir processing. J Manuf Process 78(March):352–362. https://doi.org/10.1016/j.jmapro.2022.04.027

    Article  Google Scholar 

  7. Nelaturu P, Jana S, Mishra RS, Grant G, Carlson BE (2018) Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy. Mater Sci Eng A 716(January):165–178. https://doi.org/10.1016/j.msea.2018.01.044

    Article  Google Scholar 

  8. Moghaddam M, Zarei-Hanzaki A, Pishbin MH, Shafieizad AH, Oliveira VB (2016) Characterization of the microstructure, texture and mechanical properties of 7075 aluminum alloy in early stage of severe plastic deformation. Mater Charact 119:137–147. https://doi.org/10.1016/j.matchar.2016.07.026

    Article  Google Scholar 

  9. Mahmoud TS (2013) Surface modification of A390 hypereutectic Al-Si cast alloys using friction stir processing. Surf Coatings Technol 228:209–220. https://doi.org/10.1016/j.surfcoat.2013.04.031

    Article  Google Scholar 

  10. Surekha K, Murty BS, Rao KP (2008) Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy. Surf Coatings Technol 202(17):4057–4068. https://doi.org/10.1016/j.surfcoat.2008.02.001

    Article  Google Scholar 

  11. J. Escobar et al., “Multimodal analysis of spatially heterogeneous microstructural refinement and softening mechanisms in three-pass friction stir processed Al-4Si alloy,” J. Alloys Compd., vol. 887, p. 161351, 2021, doi: https://doi.org/10.1016/j.jallcom.2021.161351.

  12. Golestaneh AF, Ali A, Zadeh M (2009) Modelling the fatigue crack growth in friction stir welded joint of 2024–T351 Al alloy. Mater Des 30(8):2928–2937. https://doi.org/10.1016/j.matdes.2009.01.006

    Article  Google Scholar 

  13. James MN et al (2007) Residual stresses and fatigue performance. Eng Fail Anal 14(2):384–395. https://doi.org/10.1016/j.engfailanal.2006.02.011

    Article  Google Scholar 

  14. M. I. Costa, C. Leitão, and D. M. Rodrigues, “Parametric study of friction stir welding induced distortion in thin aluminium alloy plates: A coupled numerical and experimental analysis,” Thin-Walled Struct., vol. 134, no. October 2018, pp. 268–276, 2019, doi: https://doi.org/10.1016/j.tws.2018.10.027.

  15. Allison J, Backman D, Christodoulou L (Nov.2006) Integrated computational materials engineering: A new paradigm for the global materials profession. JOM 58(11):25–27. https://doi.org/10.1007/s11837-006-0223-5

    Article  Google Scholar 

  16. Simar A, Bréchet Y, De Meester B, Denquin A, Gallais C, Pardoen T (2012) Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties. Prog Mater Sci 57(1):95–183. https://doi.org/10.1016/j.pmatsci.2011.05.003

    Article  Google Scholar 

  17. Agelet De Saracibar C (May2019) Challenges to Be Tackled in the Computational Modeling and Numerical Simulation of FSW Processes. Metals (Basel) 9(5):573. https://doi.org/10.3390/met9050573

    Article  Google Scholar 

  18. Hattel JH, Sonne MR, Tutum CC (2015) Modelling residual stresses in friction stir welding of Al alloys—a review of possibilities and future trends. Int J Adv Manuf Technol 76(9–12):1793–1805. https://doi.org/10.1007/s00170-014-6394-2

    Article  Google Scholar 

  19. He X, Gu F, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66. https://doi.org/10.1016/j.pmatsci.2014.03.003

    Article  Google Scholar 

  20. Buffa G, Hua J, Shivpuri R, Fratini L (Mar.2006) A continuum based fem model for friction stir welding—model development. Mater Sci Eng A 419(1–2):389–396. https://doi.org/10.1016/j.msea.2005.09.040

    Article  Google Scholar 

  21. Buffa G, Fratini L, Pasta S, Shivpuri R (2008) On the thermo-mechanical loads and the resultant residual stresses in friction stir processing operations. CIRP Ann - Manuf Technol 57(1):287–290. https://doi.org/10.1016/j.cirp.2008.03.035

    Article  Google Scholar 

  22. Chiumenti M, Cervera M, Agelet de Saracibar C, Dialami N (2013) Numerical modeling of friction stir welding processes. Comput Methods Appl Mech Eng 254:353–369. https://doi.org/10.1016/j.cma.2012.09.013

    Article  MathSciNet  MATH  Google Scholar 

  23. Colegrove PA, Shercliff HR (2005) 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. J Mater Process Technol 169(2):320–327. https://doi.org/10.1016/j.jmatprotec.2005.03.015

    Article  Google Scholar 

  24. Pan W, Li D, Tartakovsky AM, Ahzi S, Khraisheh M, Khaleel M (2013) A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy. Int J Plast 48:189–204. https://doi.org/10.1016/j.ijplas.2013.02.013

    Article  Google Scholar 

  25. Parker WS (Jul.2020) Model evaluation: An adequacy-for-purpose view. Philos Sci 87(3):457–477. https://doi.org/10.1086/708691

    Article  Google Scholar 

  26. Deplus K, Simar A, Van Haver W, De Meester B (2011) Residual stresses in aluminium alloy friction stir welds. Int J Adv Manuf Technol 56(5–8):493–504. https://doi.org/10.1007/s00170-011-3210-0

    Article  Google Scholar 

  27. Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding - Experimental and numerical studies. J Manuf Sci Eng Trans ASME 125(1):138–145. https://doi.org/10.1115/1.1537741

    Article  Google Scholar 

  28. Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf 43(6):605–615. https://doi.org/10.1016/S0890-6955(03)00022-1

    Article  Google Scholar 

  29. Schmidt HB, Hattel JH (2008) Thermal modelling of friction stir welding. Scr Mater 58(5):332–337. https://doi.org/10.1016/j.scriptamat.2007.10.008

    Article  Google Scholar 

  30. Threadgilll PL, Leonard AJ, Shercliff HR, Withers PJ (2009) Friction stir welding of aluminium alloys. Int Mater Rev 54(2):49–93. https://doi.org/10.1179/174328009X411136

    Article  Google Scholar 

  31. Frigaard, Grong, and O. T. Midling, “A process model for friction stir welding of age hardening aluminum alloys,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 32, no. 5, pp. 1189–1200, 2001, doi: https://doi.org/10.1007/s11661-001-0128-4.

  32. Sonne MR, Tutum CC, Hattel JH, Simar A, De Meester B (2013) The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024–T3. J Mater Process Technol 213(3):477–486. https://doi.org/10.1016/j.jmatprotec.2012.11.001

    Article  Google Scholar 

  33. J. H. Hattel, H. N. B. Schmidt, and C. Tutum, “Thermomechanical modelling of friction stir welding,” ASM Proc. Int. Conf. Trends Weld. Res., no. December 2014, pp. 1–10, 2009, doi: https://doi.org/10.1361/cp2008twr001.

  34. Farajkhah V, Liu Y (2017) Effect of clamping area and welding speed on the friction stir welding-induced residual stresses. Int J Adv Manuf Technol 90(1–4):339–348. https://doi.org/10.1007/s00170-016-9393-7

    Article  Google Scholar 

  35. P. S. Prevey, “X-Ray Diffraction Residual Stress Techniques,” in Materials Characterization, vol. 2, no. 513, New York, NY, USA: ASM International, 1986, pp. 380–392.

  36. Y. S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, “Microstructural evolution of 6063 aluminum during friction-stir welding,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 30, no. 9, pp. 2429–2437, 1999, doi: https://doi.org/10.1007/s11661-999-0251-1.

  37. O. R. Myhr and Grong, “Process modelling applied to 6082-T6 aluminium weldments-I. Reaction kinetics,” Acta Metall. Mater., vol. 39, no. 11, pp. 2693–2702, 1991, doi: https://doi.org/10.1016/0956-7151(91)90085-F.

  38. Feng Z, Wang XL, David SA, Sklad PS (2007) Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061–T6. Sci Technol Weld Join 12(4):348–356. https://doi.org/10.1179/174329307X197610

    Article  Google Scholar 

  39. Ma ZY, Feng AH, Chen DL, Shen J (2018) Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties. Crit Rev Solid State Mater Sci 43(4):269–333. https://doi.org/10.1080/10408436.2017.1358145

    Article  Google Scholar 

  40. Khandkar MZH, Khan JA, Reynolds AP (Jun.2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol Weld Join 8(3):165–174. https://doi.org/10.1179/136217103225010943

    Article  Google Scholar 

  41. Schmidt H, Hattel J, Wert J (Jan.2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12(1):143–157. https://doi.org/10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  42. A. Simar, “A multiscale multiphysics investigation of aluminum friction stir welds from thermal modelling to mechanical,” [Online]. Available: http://hdl.handle.net/2078.1/5203.

  43. Jin LZ, Sandström R (2012) Numerical simulation of residual stresses for friction stir welds in copper canisters. J Manuf Process 14(1):71–81. https://doi.org/10.1016/j.jmapro.2011.10.001

    Article  Google Scholar 

  44. Simar A, Pardoen T, De Meester B (2007) Effect of rotational material flow on temperature distribution in friction stir welds. Sci Technol Weld Join 12(4):324–333. https://doi.org/10.1179/174329307X197584

    Article  Google Scholar 

  45. A. Bastier, M. H. Maitournam, F. Roger, and K. Dang Van, “Modelling of the residual state of friction stir welded plates,” J. Mater. Process. Technol., vol. 200, no. 1–3, pp. 25–37, 2008, doi: https://doi.org/10.1016/j.jmatprotec.2007.10.083.

  46. J. D. Robson, A. Sullivan, H. R. Shercliff, and G. McShane, “Microstructural evolution during friction stir welding of AA7449,” 2004.

  47. “ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials,” [Online]. Available: https://www.asminternational.org/search/-/journal_content/56/10192/06182G/PUBLICATION.

  48. Liu K, Lang L, Cai G, Yang X, Guo C, Liu B (2015) A novel approach to determine plastic hardening curves of AA7075 sheet utilizing hydraulic bulging test at elevated temperature. Int J Mech Sci 100:328–338. https://doi.org/10.1016/j.ijmecsci.2015.07.002

    Article  Google Scholar 

  49. E. Gariboldi, J. N. Lemke, L. Rovatti, O. Baer, G. Timelli, and F. Bonollo, “High-temperature behavior of high-pressure diecast alloys based on the Al-Si-Cu system: The role played by chemical composition,” Metals (Basel)., vol. 8, no. 5, 2018, doi: https://doi.org/10.3390/met8050348.

Download references

Funding

The authors acknowledge the role of funding from the Department of Energy’s Vehicle Technology Office under the Lightweight Metals Core Program. The role of Stresstech Ltd. in performing the residual stress measurements is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Kranthi Balusu: Conceptualization, Writing—Original Draft, Methodology, Software, Validation, Visualization, Investigation. Kyoo Sil Choi: Writing—Review & Editing, Methodology. Hrishikesh Das, Avik Samanta: Writing—Review & Editing, Methodology, Visualization, Investigation. Piyush Upadhyay, Saumyadeep Jana: Funding acquisition, Supervision, Resources. Ayoub Soulami: Conceptualization, Funding acquisition, Supervision, Project administration.

Corresponding author

Correspondence to Kranthi Balusu.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors declare that The International Journal of Advanced Manufacturing Technology has the consent to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Parameters for the Myhr & Grong Softening Model

Table 3 here

Table 3 Softening model parameters used for A7075 alloy

Appendix B. Material Properties for A7075 and A380 Alloys

Table 4 here

Table 4 Temperature-dependent yield stresses of aluminum alloy A7075 [47, 48] and A380 [49]

Table 5 here

Table 5 Other temperature-dependent properties of the aluminum alloys [47]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balusu, K., Choi, K.S., Das, H. et al. On the Utility of the Thermal-Pseudo Mechanical Model’s Residual Stress Prediction Capability for the Development of Friction Stir Processing. Int J Adv Manuf Technol 126, 1775–1788 (2023). https://doi.org/10.1007/s00170-023-11199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11199-2

Keywords

Navigation