Skip to main content
Log in

Similar and dissimilar lap friction stir welding of titanium alloys: on the elimination of the hook defect

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work investigates similar and dissimilar lap FSW of commercially pure titanium (CP-Ti) and Ti6Al4V sheets welded with two different tool shapes, truncated conical and enlarged pin heads. It aims to assess the influence of the two tools on the formation of hook defects, mechanical strength, and fracture mode. The spindle torque and vertical force have also been monitored during the experimental FSW tests to relate the welding practice to each joint configuration. The joint strength of the FSW joints has been compared with that of joints obtained with laser welding to compare them with the most competitive fusion welding technique. The welding data have shown that the spindle torque and vertical force are related to the upper sheet strength and thermal conductivity. The hook defects particularly affected the mechanical strength of the dissimilar joints when welded with the truncated conical pin tool. This phenomenon was highlighted in the AS for the Ti6Al4V/CP-Ti joints and in the RS for the CP-Ti/Ti6Al4V joints due to asymmetrical material flow between AS and RS and to the different material properties of the two alloys. The hook defect is absent in the joints obtained with the enlarged pin tool due to the more vigorous metal stirring. However, these welds gave a higher variability during the tensile test, which was attributed to the greatest variability in the monitored vertical force (from 10 to 23 kN). This evidence suggests the difficulty of adopting complex tool features in FSW of high strength-to-mass ratio materials, as noticed from the “built up edge” on the enlarged pin tool at the end of the weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included within the article.

Code availability

Not applicable.

References

  1. Callegari B, Oliveira JP, Aristizabal K, Coelho RS, Brito PP, Wu L et al (2020) In-situ synchrotron radiation study of the aging response of Ti-6Al-4V alloy with different starting microstructures. Mater Charact 165:110400. https://doi.org/10.1016/j.matchar.2020.110400

    Article  Google Scholar 

  2. Callegari B, Oliveira JP, Coelho RS, Brito PP, Schell N, Soldera FA et al (2020) New insights into the microstructural evolution of Ti-5Al-5Mo-5V-3Cr alloy during hot working. Mater Charact 162:110180. https://doi.org/10.1016/j.matchar.2020.110180

    Article  Google Scholar 

  3. Salvador CAF, Maia EL, Costa FH, Escobar JD, Oliveira JP (2022) A compilation of experimental data on the mechanical properties and microstructural features of Ti-alloys. Sci Data 9:188. https://doi.org/10.1038/s41597-022-01283-9

    Article  Google Scholar 

  4. Cui C, Hu B, Zhao L, Liu S (2011) Titanium alloy production technology, market prospects and industry development. Mater Des 32:1684–1691. https://doi.org/10.1016/j.matdes.2010.09.011

    Article  Google Scholar 

  5. Ke WC, Oliveira JP, Ao SS, Teshome FB, Chen L, Peng B et al (2022) Thermal process and material flow during dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys. J Mater Res Technol 17:1942–1954. https://doi.org/10.1016/j.jmrt.2022.01.097

    Article  Google Scholar 

  6. Oliveira JP, Duarte JF, Inácio P, Schell N, Miranda RM, Santos TG (2017) Production of Al/NiTi composites by friction stir welding assisted by electrical current. Mater Des 113:311–318. https://doi.org/10.1016/j.matdes.2016.10.038

    Article  Google Scholar 

  7. Costa AMS, Oliveira JP, Pereira VF, Nunes CA, Ramirez AJ, Tschiptschin AP (2018) Ni-based Mar-M247 superalloy as a friction stir processing tool. J Mater Process Technol 262:605–614. https://doi.org/10.1016/j.jmatprotec.2018.07.034

    Article  Google Scholar 

  8. Mehdi B, Badji R, Ji V, Allili B, Bradai D, Deschaux-Beaume F et al (2016) Microstructure and residual stresses in Ti-6Al-4V alloy pulsed and unpulsed TIG welds. J Mater Process Technol 231:441–448. https://doi.org/10.1016/j.jmatprotec.2016.01.018

    Article  Google Scholar 

  9. Edwards P, Ramulu M (2015) Surface residual stresses in Ti-6Al-4V friction stir welds: pre- and post-thermal stress relief. J Mater Eng Perform 24:3263–3270. https://doi.org/10.1007/s11665-015-1610-2

    Article  Google Scholar 

  10. Su Y, Li W, Liu X, Gao F, Yu Y, Vairis A (2020) Strengthening mechanism of friction stir welded alpha titanium alloy specially designed T-joints. J Manuf Process 55:1–12. https://doi.org/10.1016/j.jmapro.2020.03.032

    Article  Google Scholar 

  11. Shrivastava A, Krones M, Pfefferkorn FE (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168. https://doi.org/10.1016/j.cirpj.2014.10.001

    Article  Google Scholar 

  12. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Reports 50:1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  13. Meng X, Huang Y, Cao J, Shen J, Jorge F (2021) Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci 115:100706. https://doi.org/10.1016/j.pmatsci.2020.100706

    Article  Google Scholar 

  14. Mironov S, Sato YS, Kokawa H (2018) Friction-stir welding and processing of Ti-6Al-4V titanium alloy: a review. J Mater Sci Technol 34:58–72. https://doi.org/10.1016/j.jmst.2017.10.018

    Article  Google Scholar 

  15. Sesha KSN, Yamanaka K, Mori M, Onuki Y, Sato S, Fabrègue D et al (2022) Demonstrating a duplex TRIP/TWIP titanium alloy via the introduction of metastable retained β-phase. Mater Res Lett 10:754–761. https://doi.org/10.1080/21663831.2022.2096419

    Article  Google Scholar 

  16. Qiu G, Guo Y (2022) Current situation and development trend of titanium metal industry in China. Int J Miner Metall Mater 29:599–610. https://doi.org/10.1007/s12613-022-2455-y

    Article  Google Scholar 

  17. Division of Banner Industries (n.d.) Supra Alloys. Last time accessed on August 31 2022 http://www.supraalloys.com/titanium-grades.php

  18. Lunetto V, Priarone PC, Kara S, Settineri L (2021) A comparative LCA method for environmentally friendly manufacturing: additive manufacturing versus Machining case. Procedia CIRP 98:406–411. https://doi.org/10.1016/j.procir.2021.01.125

    Article  Google Scholar 

  19. Lunetto V, Catalano AR, Priarone PC, Salmi A, Atzeni E, Moos S et al (2021) Additive manufacturing for an urban vehicle prototype: re-design and sustainability implications. Procedia CIRP 99:364–369. https://doi.org/10.1016/j.procir.2021.03.104

    Article  Google Scholar 

  20. ReshadSeighalani K, BesharatiGivi MK, Nasiri AM, Bahemmat P (2010) Investigations on the effects of the tool material, geometry, and tilt angle on friction stir welding of pure titanium. J Mater Eng Perform 19:955–962. https://doi.org/10.1007/s11665-009-9582-8

    Article  Google Scholar 

  21. Liu H, Nakata K, Yamamoto N, Liao J (2010) Friction stir welding of pure titanium lap joint. Sci Technol Weld Join 15:428–432. https://doi.org/10.1179/136217110X12731414740031

    Article  Google Scholar 

  22. Liu H, Nakata K, Yamamoto N, Liao J (2010) Grain orientation and texture evolution in pure titanium lap joint produced by friction stir welding. Mater Trans 51:2063–2068. https://doi.org/10.2320/matertrans.M2010242

    Article  Google Scholar 

  23. Liu FC, Liu H, Nakata K, Yamamoto N, Liao J (2013) Investigation on friction stir welding parameter design for lap joining of pure titanium. Proc 1st Int Jt Symp Join Weld Elsevier 159–163. https://doi.org/10.1533/978-1-78242-164-1.159

  24. Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S (2008) Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool. Mater Sci Eng A 488:25–30. https://doi.org/10.1016/j.msea.2007.10.062

    Article  Google Scholar 

  25. Du S, Liu H, Jiang M, Hu Y, Zhou L (2021) Eliminating the cavity defect and improving mechanical properties of TA5 alloy joint by titanium alloy supporting friction stir welding. J Manuf Process 69:215–222. https://doi.org/10.1016/j.jmapro.2021.07.044

    Article  Google Scholar 

  26. Amirov AI, Eliseev AA, Beloborodov VA, Chumaevskii AV, Gurianov DA (2020) Formation of α’ titanium welds by friction stir welding. J Phys Conf Ser 1611:012001. https://doi.org/10.1088/1742-6596/1611/1/012001

    Article  Google Scholar 

  27. Ji S, Li Z (2017) Reducing the hook defect of friction stir lap welded Ti-6Al-4V alloy by slightly penetrating into the lower sheet. J Mater Eng Perform 26:921–930. https://doi.org/10.1007/s11665-017-2512-2

    Article  Google Scholar 

  28. Buffa G, Fratini L, Schneider M, Merklein M (2013) Effect of process parameters on the joint integrity in friction stir weldinG of Ti-6Al-4V lap joints. Key Eng Mater 554–557:1083–1090. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1083

    Article  Google Scholar 

  29. Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S (2008) Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds. Mater Sci Eng A 485:448–455. https://doi.org/10.1016/j.msea.2007.08.051

    Article  Google Scholar 

  30. Edwards P, Ramulu M (2010) Identification of process parameters for friction stir welding Ti–6Al–4V. J Eng Mater Technol 132:0310061–03100610. https://doi.org/10.1115/1.4001302

    Article  Google Scholar 

  31. Edwards PD, Ramulu M (2015) Material flow during friction stir welding of Ti-6Al-4V. J Mater Process Technol 218:107–115. https://doi.org/10.1016/j.jmatprotec.2014.11.046

    Article  Google Scholar 

  32. Buffa G, Fratini L, Schneider M, Merklein M (2013) Micro and macro mechanical characterization of friction stir welded Ti–6Al–4V lap joints through experiments and numerical simulation. J Mater Process Technol 213:2312–2322. https://doi.org/10.1016/j.jmatprotec.2013.07.003

    Article  Google Scholar 

  33. Buffa G, Ducato A, Fratini L (2013) FEM based prediction of phase transformations during Friction Stir Welding of Ti6Al4V titanium alloy. Mater Sci Eng A 581:56–65. https://doi.org/10.1016/j.msea.2013.06.009

    Article  Google Scholar 

  34. Gangwar K, Ramulu M, Cantrell A, Sanders D (2016) Microstructure and mechanical properties of friction stir welded dissimilar titan. Microstructure and mechanical properties of friction stir welded dissimilar titanium alloys: TIMET-54M and ATI-425. Metals (Ba. Metals (Basel) 6:252. https://doi.org/10.3390/met6100252

    Article  Google Scholar 

  35. Gonser MJ (2010) Microstructure evolution and material flow behavior in friction-stir welded dissimilar titanium alloys. The Ohio State University. http://rave.ohiolink.edu/etdc/view?acc_num=osu1268138325

  36. Buhl N, G W, Eifler D, Gutensohn M, Zillekens F (2013) Microstructural and mechanical investigations of friction stir welded TI/TI- and TI-alloy/TI-alloy-joints. In: Mishra R, Mahoney MW, Sato Y, Hovanski Y, Verma R, editor. Frict Stir Weld Proceesing VII Springer 141–142. https://doi.org/10.1007/978-3-319-48108-1_15

  37. ASTM International (2020) Standard specification for titanium and titanium alloy strip, sheet, and plate ASTM B265. 12. https://doi.org/10.1520/B0265-20A.2.

  38. Gao F, Guo Y, Qiu S, Yu Y, Yu W (2020) Fracture toughness of friction stir welded TA5 titanium alloy joint. Mater Sci Eng A 776:138962. https://doi.org/10.1016/j.msea.2020.138962

    Article  Google Scholar 

  39. Gao F, Guo Y, Yang S, Yu Y, Yu W (2020) Fatigue properties of friction stir welded joint of titanium alloy. Mater Sci Eng A 793:139819. https://doi.org/10.1016/j.msea.2020.139819

    Article  Google Scholar 

  40. Li J, Shen Y, Hou W, Qi Y (2020) Friction stir welding of Ti-6Al-4V alloy: friction tool, microstructure, and mechanical properties. J Manuf Process 58:344–354. https://doi.org/10.1016/j.jmapro.2020.08.025

    Article  Google Scholar 

  41. Li J, Cao F, Shen Y (2020) Effect of welding parameters on friction stir welded Ti–6Al–4V joints: temperature, microstructure and mechanical properties. Metals (Basel) 10:940. https://doi.org/10.3390/met10070940

    Article  Google Scholar 

  42. Pasta S, Reynolds AP (2008) Residual stress effects on fatigue crack growth in a Ti-6Al-4V friction stir weld. Fatigue Fract Eng Mater Struct 31:569–580. https://doi.org/10.1111/j.1460-2695.2008.01258.x

    Article  Google Scholar 

  43. Fall A, Monajati H, Khodabandeh A, Fesharaki MH, Champliaud H, Jahazi M (2019) Local mechanical properties, microstructure, and microtexture in friction stir welded Ti-6Al-4V alloy. Mater Sci Eng A 749:166–175. https://doi.org/10.1016/j.msea.2019.01.077

    Article  Google Scholar 

  44. Gili AB, Hattingh DG, Bernard D (2019) Relationship between tool tilt angle, shoulder plunge depth and process energy input for pin-less friction stir welded thin Ti-6Al-4V sheets. IOP Conf Ser Mater Sci Eng 655:012010. https://doi.org/10.1088/1757-899X/655/1/012010

    Article  Google Scholar 

  45. Buffa G, Fratini L, Micari F (2012) Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titanium alloys. J Manuf Process 14:289–296. https://doi.org/10.1016/j.jmapro.2011.10.007

    Article  Google Scholar 

  46. Buffa G, Fratini L, Micari F, Settineri L (2012) On the choice of tool material in friction stir welding of titanium alloys. Proc NAMRI/SME 40:785–794

    Google Scholar 

  47. Qi Y, Li J, Shen Y, Hou W (2020) Simulation and experimental study on temperature and flow field in friction stir welding of TC4 titanium alloy process. Mater Trans 61:2378–2385. https://doi.org/10.2320/matertrans.MT-M2020017

    Article  Google Scholar 

  48. Yue Y, Wen Q, Ji S, Ma L, Lv Z (2017) Effect of temperature field on formation of friction stir welding joints of Ti–6Al–4V titanium alloy. High Temp Mater Process 36:733–739. https://doi.org/10.1515/htmp-2015-0178

    Article  Google Scholar 

  49. Huang Y, Wan L, Meng X, Xie Y, Lv Z, Zhou L (2018) Probe shape design for eliminating the defects of friction stir lap welded dissimilar materials. J Manuf Process 35:420–427. https://doi.org/10.1016/j.jmapro.2018.08.026

    Article  Google Scholar 

  50. Yongxian H, Long W, Xiaoqing S, Tifang H, Xiangchen M, Yuming X (2019) Achieving high-quality Al/steel joint with ultrastrong interface. Metall Mater Trans A 50:295–299. https://doi.org/10.1007/s11661-018-5006-4

    Article  Google Scholar 

  51. ASTM International (2016) Standard practice for microetching metals and alloys ASTM E407. 07:1–22https://doi.org/10.1520/E0407-07R15E01.2

  52. ASTM International (2017) Standard test methods for Vickers hardness and Knoop hardness of metallic materials ASTM E92. https://doi.org/10.1520/E0092-17

  53. ASM Specification Aerospace Metals (n.d.) Titanium grade 5. Last time accessed on August 31 2022 https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mtp641

  54. ASM Specification Aerospace Metals (n.d.) Titanium grade 2. Last time accessed on August 31 2022 https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTU020

  55. Tarín P, Gualo A, Simón AG, Piris NM, Badía JM (2010) Study of alpha-beta transformation in Ti-6Al-4V-ELI. Mechanical and microstructural characteristics. Mater Sci Forum 638–642:712–717. https://doi.org/10.4028/www.scientific.net/MSF.638-642.712

    Article  Google Scholar 

  56. Murugesh L, Ravi J, Mahmood ST, Murty KL (1989) Contractile strain ratios of textured cp-titanium (grade II) sheet. J Mater Shap Technol 7:81–90. https://doi.org/10.1007/BF02833774

    Article  Google Scholar 

  57. Gupta RK, Kumar VA, Mathew C, Rao GS (2016) Strain hardening of titanium alloy Ti6Al4V sheets with prior heat treatment and cold working. Mater Sci Eng A 662:537–550. https://doi.org/10.1016/j.msea.2016.03.094

    Article  Google Scholar 

  58. Oliveira JP, Shen J, Escobar JD, Salvador CAF, Schell N, Zhou N et al (2021) Laser welding of H-phase strengthened Ni-rich NiTi-20Zr high temperature shape memory alloy. Mater Des 202:109533. https://doi.org/10.1016/j.matdes.2021.109533

    Article  Google Scholar 

  59. Oliveira JP, Shamsolhodaei A, Shen J, Lopes JG, Gonçalves RM, de Brito Ferraz M et al (2022) Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steel. Mater Des 219:110717. https://doi.org/10.1016/j.matdes.2022.110717

    Article  Google Scholar 

Download references

Funding

This study was supported by J-Tech@PoliTO, an advanced joining technologies research center at Politecnico di Torino (http://www.j-tech.polito.it/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Lunetto.

Ethics declarations

Ethics approval

Compliance with ethical standards.

Consent to participate

All the authors agreed with the consent to participate.

Consent for publication

All the authors have read and agreed to the publication of the paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunetto, V., De Maddis, M. & Russo Spena, P. Similar and dissimilar lap friction stir welding of titanium alloys: on the elimination of the hook defect. Int J Adv Manuf Technol 126, 3417–3435 (2023). https://doi.org/10.1007/s00170-023-11316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11316-1

Keywords

Navigation